FleXOR: Flexible garbling for XOR gates that beats free-XOR

Publication
Aug 1, 2014
[Work published prior to Yahoo]
Abstract

Most implementations of Yao's garbled circuit approach for 2-party secure computation use the {\em free-XOR} optimization of Kolesnikov \& Schneider (ICALP 2008). We introduce an alternative technique called {\em flexible-XOR} (fleXOR) that generalizes free-XOR and offers several advantages. First, fleXOR can be instantiated under a weaker hardness assumption on the underlying cipher/hash function (related-key security only, compared to related-key and circular security required for free-XOR) while maintaining most of the performance improvements that free-XOR offers. Alternatively, even though XOR gates are not always ``free'' in our approach, we show that the other (non-XOR) gates can be optimized more heavily than what is possible when using free-XOR. For many circuits of cryptographic interest, this can yield a significantly (over 30\%) smaller garbled circuit than any other known techniques (including free-XOR) or their combinations.

  • Advances in Cryptology--CRYPTO 2014
  • Conference/Workshop Paper

BibTeX