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ABSTRACT
With the ever increasing usage of mobile search, where text
input is typically slow and error-prone, assisting users to
formulate their queries contributes to a more satisfactory
search experience. Query auto-completion (QAC) techniques,
which predict possible completions for user queries, are the
archetypal example of query assistance and are present in
most search engines. We argue, however, that classic QAC,
which operates by suggesting whole-query completions, may
be sub-optimal for the case of mobile search as the available
screen real estate to show suggestions is limited and editing
is typically slower than in desktop search. In this paper we
propose the idea of term-by-term QAC, which is a new tech-
nique inspired by predictive keyboards that suggests to the
user one term at a time, instead of whole-query completions.
We describe an efficient mechanism to implement this tech-
nique and an adaptation of a prior user model to evaluate
the effectiveness of both standard and term-by-term QAC
approaches using query log data. Our experiments with a
mobile query log from a commercial search engine show the
validity of our approach according to this user model with
respect to saved characters, saved terms and examination
effort. Finally, a user study provides further insights about
our term-by-term technique compared with standard QAC
with respect to the variables analyzed in the query log-based
evaluation and additional variables related to the successful-
ness, the speed of the interactions and the properties of the
submitted queries.

Categories and Subject Descriptors: H.3.3 [Informa-
tion Storage & Retrieval]: Query Formulation

Keywords: query auto completion, word prediction, user
models, query logs

1. INTRODUCTION
Query Auto-Completion (QAC) is a widely known and

deployed mechanism that facilitates the task of formulating
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queries in search engines. In its basic version, a QAC mecha-
nism presents to the user possible completions for the query
the user is entering. In more elaborated cases, QAC tech-
niques can also rephrase and correct some parts of the query
that the user has already typed. Completions for queries
are typically based on previous queries that have been sub-
mitted to the search engine, although some QAC systems
are capable of constructing new queries that are adapted to
the search context of the user [4, 22]. QAC has attracted an
increasing level of interest from the research community with
proposals that take into account personalization, context,
time-awareness and user behavior in QAC systems.

Assisting users to formulate their queries becomes funda-
mental in the context of mobile search. The use of search
engines in mobile devices such as smartphones and tablets
has experienced a rapid growth in the last years [13]. Text
input in mobile devices is generally much slower and clum-
sier than in traditional desktop environments. Therefore,
QAC can be considered, in principle, even more useful in the
context of mobile search. We argue however that classical
QAC mechanisms give sub-optimal results in such context, as
their direct adaptation to mobile search disregards problems
related to the smaller screen real estate and the slower and
clumsier text input and editing in mobile devices.

In this paper we propose a novel QAC mechanism in which
the system suggests to the user one term at a time, rather
than whole-query completions. We believe that this method
is more suited to mobile search as it allows a faster exploration
of suggestions and it adapts better to the particularities of
text editing in mobile devices. This idea is inspired by the
word prediction mechanisms present in predictive keyboards
available in major mobile operating systems. Based on this,
we describe a term-by-term QAC system implemented using
a query-term graph, a data structure that allows the efficient
storage and exploitation of query log data. We also adapt a
prior user model for QAC to design effectiveness metrics for
both standard and term-by-term QAC in offline evaluations.

Our proposal is tested under two different experimental
settings. In the first setting, metrics based on a user model
for QAC are used to evaluate data from the mobile query log
of a commercial search engine following standard evaluation
methodologies. In the second, we conduct a user study
which compares our approach with standard QAC for the
formulation of queries for a series of search tasks and provides
insights into the validity of our proposal in terms of different
user-engagement measures.

The rest of the paper is structured as follows. Section 2
reviews the related work on mobile search, query auto-



completion and word prediction. In Section 3 we provide a
discussion of the inconveniences of standard QAC in mobile
search and the advantages that a term-by-term QAC mecha-
nism might bring. A system for term-by-term QAC based on
a structure called query-term graph is presented in Section 4.
Metrics to measure the effectiveness with respect to saved
terms and examination effort of the standard and our new
QAC methods are provided in Section 5. In Section 6 we
present and discuss two different experimental settings that
have been carried out to validate our idea. Finally, Section 7
offers the conclusions and future work.

2. RELATED WORK
This Section presents prior research related to our pro-

posal. First, we comment on studies that have analyzed the
characteristics of queries submitted from mobile devices. We
review then the literature on QAC, for which we present a
new technique. Finally, we briefly discuss the literature on
word prediction, which inspired part of our work.

2.1 Mobile Search
In the last decade, a number of studies have been dedicated

to understanding the trends and search behavior in mobile
search, focusing particularly on the differences between desk-
top and mobile search regarding topics and characteristics
of search sessions and queries.

For example, the work of Kamvar and Baluja [16] presents
the analysis of Google search logs from 2005 in the US. Their
study shows, among other interesting results, that better text
input capabilities in mobile devices result in longer queries
and that search sessions are sensibly shorter (1.6 queries
per session) than in desktop search (>2 queries per session).
In a more recent study, Kamvar and Baluja [17] show the
evolution of search behavior over time by analyzing search
logs from 2007. This study indicates an increase in the length
of queries (from 2.3 mean terms per query in 2005 to 2.7 in
2007) and in the percentage of queries with one accepted
result (from 10% to 50%). In both studies, adult content is
the most popular content category for mobile searchers.

Baeza-Yates et al. [2] compared the characteristics of mo-
bile and desktop queries submitted to the Yahoo Japan
search engine in 2006. Among other observations, the authors
found a close correspondence between the number of terms of
queries in both scenarios, but a larger discrepancy between
the number of characters per query (7.9 in desktop and 9.6 in
mobile). They also showed that online shopping, health and
sports are the most popular search topics in that market.

Church et al. [8] analyzed the search habits of European
users in 2005, revealing several specific details about their
search patterns. For example, they report that 23% of the
queries are modifications of previously submitted queries, of
which half of them correspond to single term substitutions.
Later on, the same authors extended in [7] their study by
including a much larger sample of queries and an analysis of
click-through data from Google mobile search.

Studying the particular nuances of mobile user behavior
might yield improvements in mobile search. For instance,
Song et al. [26] introduced a study performed on the Bing
mobile search engine in 2012. Based on their results re-
garding the search behavior in terms of time distribution,
search locality, query categories and other characteristics,
the authors proposed a new framework to improve ranking
on mobile search by incorporating mobile-specific features

and transferring knowledge from desktop search relevance to
mobile search.

2.2 Query Auto-Completion
Query auto-completion systems have attracted an increas-

ing level of interest by both the research community and
industry. Data for such systems comes from past user queries.
In its simplest variant, QAC algorithms rank completions
by their popularity in the past, an algorithm which we re-
fer to as most-popular completion [3] throughout this work.
However, recent research has focused on going beyond such
basic mechanisms and taking into account the search context
and the preferences of users. For example, Bar-Yossef and
Kraus [3] proposed a context-sensitive QAC algorithm that
considers the current browsing session in order to suggest
completions related to the topics of the session. Shokouhi
and Radinsky [25] presented a time-sensitive approach in
which query suggestions are ranked by forecasted frequency
adapted to the moment the query is formulated, instead of
being ranked by their past frequency. In a similar direc-
tion, Whiting and Jose [27] have proposed a QAC method
that takes into account query recency and emergence as
improvements over plain time-independent query frequency.
Additionally, user demographics have been considered by
Shokouhi [24] to personalize the ranking of query suggestions.
In our proposal, we take a different research direction in
which, instead of improving QAC in terms of personalization,
context and time-awareness, we propose a novel manner of
suggesting query predictions that is better adapted to the
characteristics of mobile devices.

Following a different research direction, other authors have
studied how users interact with QAC systems as a way to
provide better measurements of the effectiveness of such
systems. For example, Kamvar and Baluja [18] studied how
users interact with QAC systems in mobile search and, as
a result, reported interesting usage patterns. Kharitonov et
al. [19] proposed a user model for QAC based on cascade-
based metrics [6]. By learning the model parameters from a
query log of Yandex, the authors derive two different metrics
for the evaluation of QAC effectiveness that show a higher
correlation with success rate than prior metrics proposed for
the task. Li et al. [20] proposed a two-dimensional click model
that, instead of being used to evaluate the effectiveness of
QAC systems, is used to improve the ranking of suggestions.
The query log-based evaluation of our proposal is based on
these two previous papers. Finally, Mitra et al. [21] and
Hofmann et al. [14] studied user interactions with the QAC
system of Bing. Our user study adapts some of the metrics
for query formulation analyzed in [14].

2.3 Word Prediction
Word prediction technologies focus on the tasks of complet-

ing or predicting the next word in general text input. Darragh
et al. [9] described an early proposal of this technology based
on a new interface that partially automates typed input and
increases the speed and ease of text input. Research on
word prediction has typically been oriented towards assisting
users with disabilities [12]. However, with the widespread
adoption of mobile devices, this technology has experimented
a massive adoption with the so-called predictive keyboards,
present nowadays in modern mobile operating systems [23],
where word prediction is one of the most relevant features.
The success of predictive keyboards is the main motivation
for our proposal for term-by-term QAC.



3. APPLYING NEXT-TERM PREDICTION
TO QUERY AUTO-COMPLETION

Mobile search, despite its ever increasing usage, is limited
by the characteristics of text input and display of mobile
platforms. Specifically, text input in mobile devices such
as smartphones and tablets is generally much slower and
clumsier than in personal computers, as users have to rely
on smaller, on-screen keyboards. Moreover, text display is
also limited by the comparably smaller screen real estate
of mobile devices, which further complicates text input and
editing especially in single-line search boxes as long queries
may not be displayed completely and text selection is, by our
own experience, a difficult task in such devices. In order to
facilitate the task of query formulation in such scenario, we
identify two types of technologies that help users formulate
queries in mobile search.

On the one hand, QAC techniques are the archetypal
system for query formulation assistance, which, in principle,
could be considered even more useful in mobile search than
in the case of desktop search given the previously described
limitations for entering text in smartphones and tablets.
We find however that suggesting to the users completions
for whole queries may be sub-optimal in this case, as we
identify a number of problems related with the described
characteristics of text input and display in mobile devices
after having tested the mobile versions of several commercial
web search engines, such as Bing, Yahoo and Google. These
problems can be summarized as follows:
• Given the limited screen real estate (notably in the case

of smartphones), QAC systems are restricted to show
a small set of query completions and, moreover, when
a completion does not fit in a single line, the explored
interfaces of web search engines take one the following sub-
optimal approaches: showing a fragment of the completions
(thus making more difficult its reading) or display them in
several lines (so that less different completions are shown
at the same time).
• Text reading in mobile devices is cumbersome as well,

so one can expect that users would have to spend some
time to evaluate whole-query suggestions, which ultimately
leads to ignoring the suggestions.
• The user may not be interested in the exact whole com-

pletion, but a fraction or a variation of it. However, as
previously pointed out, text editing in mobile interfaces
(especially in the general case of touchscreens) is generally
a clumsy process and users may be reluctant to accept
partially relevant suggestions that would require editing.
On the other hand, term prediction systems, which are a

related but different technology that is applied to generic
text input in mobile devices, have been found to be a use-
ful feature implemented by predictive keyboards to cope
with the aforementioned problems for general text input in
mobile devices. Such systems provide two types of predic-
tions: current term prediction, in which the keyboard shows
completions for the term that the user is typing, and next
term prediction, in which a small number of suggested terms
(typically three) are presented to the user as possible next
terms after the last term entered by the user. In this work,
we are interested specifically in the second type of prediction.
Next term predictions, as found in predictive keyboards, are
typically based on common sequences of words that may take
into account the writing patterns of the users and other data

such as address books, thus not being specifically crafted for
the purpose of query formulation. The success of next term
prediction technologies in predictive keyboards is manifested
by their inclusion as default input methods in all major mo-
bile operative systems and also in the app markets of these,
where the number of installations of alternative predictive
keyboard apps are counted by millions.

We propose in this work a method for query formulation
assistance that lies at the intersection of QAC and next term
prediction. The idea is to re-define QAC by suggesting, rather
than whole completions, one term at a time to formulate
the intended query. Note that we do not propose to replace
QAC by predictive keyboards, but to re-purpose algorithms
for standard QAC algorithms to provide completions based
on single terms. We believe that this approach, that we refer
to as term-by-term QAC, solves the limitations found for
standard QAC for the following reasons:
• As only single terms are suggested to the users, space

limitations are drastically reduced.
• The time required to read suggested terms is significantly

smaller than in the case of whole completions, which should
increase the usage of such technologies and shorter inter-
action times.
• As only one term at a time is presented to the user, prob-

lems related with editing suggestions are also partly solved,
as the need of editing the suggestion will be generally
smaller and, even in that case, editing the suggestion will
require less effort than editing whole completions.
As already pointed out, a term prediction mechanism

deals with two closely related but different prediction tasks:
completing the current term and predicting the next one.
In order to simplify our analysis, in this study we focus
exclusively on the second case. Focusing on the second case
is reasonable as prior studies have found that QAC systems
have a higher chance of being used after complete terms have
been entered [20, 21]. Moreover, current term completion
can also be seen as a special case of next term prediction,
meaning that the conclusions of focusing on one type of
prediction can be generalized to the other.

4. THE QUERY-TERM GRAPH
We now propose an efficient method to implement a term-

by-term QAC system based on previous queries submitted
to a search engine. Relying on previous queries is a stan-
dard way of implementing QAC by major search engines [3]
and most proposals from the state of the art follow this
approach [15, 24, 25, 27]. In particular, our solution makes
use of queries gathered from a commercial search engine
and stores them in a graph structure that we refer to as
query-term graph, which allows an efficient way of storing
and retrieving millions of queries. We describe next our
query-term graph, a procedure to build it from previously
submitted queries and two algorithms for suggesting the most
popular completion in standard and term-by-term QAC.

4.1 Definition
The query-term graph is a directed, weighted graph that

stores millions of queries in a compact way. It is composed of
three types of nodes: a unique root node with no incoming
edges that represents the start of every query, intermediate
nodes that contain query terms and end-of-query nodes with
no outgoing edges that mark the end of a query. All the
paths of the query-term graph starting from the root node



Figure 1: Example of a query-term graph. The root node (circle) is located on the left, the query terms
occupy intermediate positions and the leaf nodes (squares) mark the end of queries.

and ending in a leaf node represent queries that the QAC
system can provide as completions. Each edge has a weight
that represents the probability of the paths that contain it to
be the completions of the sub-path that starts from the root
node and ends in the source node of the edge. See Figure 1
for an example of a query-term graph. In this example, we
can see that queries such as android news apps and hotels

in oslo are stored in the graph as paths from the root to
leaf nodes.

Although the query-term graph has some resemblance with
the well-known tries [11], it has significant differences nonethe-
less. First, the intermediate nodes of our graph store terms
rather than characters. Second, ours is a weighted graph as
we need weights to calculate the likelihood of completions.
Third, our query-term graph is not necessarily restricted to
a tree-like structure since we may allow intermediate nodes
to share branches. That can be useful, for instance, when
different starting terms share many suffixes, such as the case
of synonyms or entities of the same category. See Figure 2
for an example of two nodes having common branches. In
this case, both android and iphone share suffixes such as
apps or wallpapers.

4.2 Construction
The construction of a query-term graph using a query log

can be costly since millions of queries need to be processed
and added to this structure. We briefly detail here the steps
involved in an efficient procedure for building a query-term
graph for millions of queries submitted to a commercial
search engine. To illustrate the process, we consider the
small example of a query log in Table 1 that generates the
query-term graph of Figure 1.

In its most simple configuration, such as to implement
algorithms to provide the most-popular completion that we
detail in the next section, only the set of submitted queries
in the query log is required. After an initial pre-processing
to discard anomalous queries and queries composed of only
one term – which our term-by-term mechanism has no use
for –, a first step involves counting the number of times each
unique query has been repeated. After that, we determine
the structure of the query-term graph by identifying all the
different paths starting from the root node together with
the aggregated frequency of each of them. We do this by
splitting every query by its terms and extracting all the
different prefixes, that is, the possible paths of the graph

starting from the root node. In this step we also assign an
unique id to every unique path, including the zero-length path
of the root node, with id 0. For instance, for the queries of the
query-term graph of Figure 1, we would have generated the
list of sub-paths with their respective aggregated frequencies
and ids of Table 2.

Once the paths of the query log have been determined,
the next step consists in determining the nodes and edges
of the graph based on the extracted sub-paths. The nodes
are determined by the id and last term of every sub-path
extracted in the previous step. The edges are in turn ex-
tracted by finding for each path its immediate sub-path
(the longest path which is a sub-sequence of the target one),
a process that can be efficiently performed by having the
list of paths in lexicographical order. In our example, the
resulting edges together with their weights would be, follow-
ing the format (src, dest; count), the following: (0, 1;

10), (1, 2; 5), (2, 3; 5), (1, 4; 5), (0, 5; 100), (5,

6; 70), (6, 7; 56), (6, 8; 14) and (5, 9; 30). A nor-
malization of the weights of the outgoing edges of each nodes
so that they sum 1 may also be performed for convenience.
Note that all the previous steps can be carried out by means
of scalable, distributed programming models such as MapRe-
duce [10]. Finally, the resulting sets of nodes and edges that
form our query-term graph can be efficiently stored with
help of compression graph techniques such as the Webgraph
framework [5].

As mentioned, the previous steps describe the construction
of a simple query-term graph – more precisely in this case, a
directed tree – based on previous queries with weights derived
from the popularity of each query. However, additional steps
could be considered to enrich the construction of the graph.
For instance, other indicators for the quality of the queries
such as the number of clicked results for each query, could
be easily incorporated to provide better completions. Also,
identifying common suffix patterns between queries could be
used not only to reduce the size of the graph (see Figure 2),
but also to infer previously unseen query completions.

4.3 Usage
The standard and more direct approach for QAC consists

in suggesting for a given query prefix its most popular com-
pletions [3]. Many of the state-of-the-art proposals build on
this idea and refine it to make personalized, context-aware
recommendations. We now describe how most popular com-



Figure 2: Example of the of common branches of
nodes in the query-term graph.

pletions, either in standard or term-by-term QAC, can be
implemented using our query-term graph.

On the one hand, the term-by-term most popular comple-
tion using the query-term graph basically consists in keeping
track of the path followed by the user when submitting a
query, as defined by the current terms of it, and presenting
suggestions in the form of the N terms of the destination
nodes of the outgoing edges with higher weights, possibly
including the special end-of-query leaf nodes to indicate to
the user that the current state of the query may be sufficient.

On the other hand, despite not being its intended pur-
pose, the query-term graph can also be used to implement
a standard most-popular completion mechanism suggesting
entire queries. As in the term-by-term case, the algorithm
needs to trace the path followed by the current state of the
query. For a given query prefix, the suggestions in the form
of whole-query completions are extracted by searching in the
graph the continuing paths to leaf nodes whose probabilities
– as product of the probabilities of their edges – are among
the N highest. Note that this procedure can be efficiently
implemented by means of a pruned depth-first search in
which candidate branches whose maximum probability is
lower than the current candidate completions are discarded.

By comparing the two previous algorithms, it is clear that
the algorithm for standard most-popular completion – even
with optimizations – is costlier than its term-by-term counter-
part, in which the search is reduced to select the immediate
edges with highest probabilities. Although standard QAC is
generally implemented by means of alternative data struc-
tures and algorithms, possibly more optimal for that task, we
claim that the computational cost of our term-by-term QAC
is generally smaller than the standard whole-query approach
given its simplicity. Therefore, even though computational
efficiency of QAC mechanisms is not a goal of this paper, we
believe our approach is appealing also in this respect.

5. A USER MODEL FOR TERM-BY-TERM
QUERY AUTO-COMPLETION

The differences between the standard and term-by-term
QAC methods can be further explained by means of a user
model that explains how users examine and select the sug-
gestions provided by each method. In this section we provide
such user model for both alternatives and present three de-
rived metrics, namely saved characters, saved terms and
effort, to evaluate QAC using query log data. As stated in
Section 3, in this paper we take the simplification of only deal-
ing with the problem of providing suggestions after the user
has finished entering a whole term of the query. This decision
is reflected in the formulation of the user model we describe,

count path

5 android news apps
5 android wallpapers
56 hotels in barcelona
14 hotels in oslo
30 hotels july

Table 1: Example of a really small query log.

id count path

1 10 android
2 5 android news
3 5 android news apps
4 5 android wallpapers
5 100 hotels
6 70 hotels in
7 56 hotels in barcelona
8 14 hotels in oslo
9 30 hotels july

Table 2: Possible sub-paths of the queries in Table 1.

although a generalized version that takes into account the
current term completion case can be easily included.

Recently, Kharitonov et al. [19] proposed a user model for
the evaluation of QAC in which the probability of a user ex-
amining a suggestion depends on two dimensions, namely the
position of the suggestion in a given list of suggestions and
the length of the current formulated query. In a similar man-
ner, the work of Li at al. [20] explores these two-dimensions
in a click model for QAC. These models build on two basic
assumptions. First, they assume that a user, while typing
a query, examines every completion suggested by the QAC
mechanism with a probability that depends on the current
state the entered query (e.g. the user might examine more
suggestions at the beginning of the formulation process) and
the position of the completion in the list of suggestions (typi-
cally with decreasing probability with the position) but does
not depend on the suggestions for previous prefixes (i.e. even
if the previous suggestions were not satisfactory, they do
not influence the examination probability of the next sug-
gestions). Second, it is assumed that only completions that
match the query that the user has in mind may be accepted.

Following these assumptions, we consider the random vari-
able Ej

i that models if the j-th suggestion provided after
the i-th term of the query is examined. By denoting as
j = m(i) the position of the suggestion that matches the
intended query after the i-th term (in the case that none of
the suggestions matches the intended query, then m(i) =∞),

we consider then the probability p(E
m(i)
i ) of providing a

satisfying suggestion after i terms of the intended query have
been entered. This probability plays however different roles
depending on the method for QAC. In the case of standard
QAC, where suggestions are whole-query completions, the
probability of examination of a given suggestion after i terms
have been entered has to take into account the fact that
the matching completion may have been shown in previous
suggestions. In case the matching completion was shown and
selected, the suggestions at query position i are not exam-
ined. This way, in standard QAC the probability p(M i

STD) of
matching the intended query after i terms have been entered
is determined by the following equation:

p(M i
STD) = p(E

m(i)
i )

∏
i′<i

(
1− p(E

m(i′)
i′ )

)
(1)

In the case of term-by-term QAC, suggestions only consist



of predictions for the next term of the query. Therefore, the
fact that previous suggestions have been accepted does not
affect, as assumed by our model, the examination probability
at position i, so the matching probability p(M i

TBT ) at query
position i is simply given by the probability of examination:

p(M i
TBT ) = p(E

m(i)
i ) (2)

In prior work [19, 20] the probability distribution of exami-
nation p(Ej

i ) for standard QAC was estimated with query log
data. As data for term-by-term QAC is not available to date,
we rely in this work on a fixed probability P (Ej

i ) = 1/(j + 1)
which is reciprocal to the position of each completion of the
suggestion list for both standard and term-by-term QAC.
While not taking into account the horizontal dimension, i.e.
the state of the entered prefix of the query, the experiments
of [19] show that this reciprocal estimation is only moder-
ately worse than models learned from user interactions and,
moreover, is in line with the commonly considered MRR
metric used to evaluate QAC algorithms found in many of-
fline experiments of prior work [3, 15, 20, 24, 25, 27]. Note
that we assume the same probability of examination for both
methods, although we could consider higher probabilities for
the term-by-term completions as they are shorter than their
whole-query counterparts.

Similarly to [19], we measure with our model the effective-
ness in terms of the number of characters, as well as terms,
that the QAC methods save the user to enter. Given our
previous assumptions, the proportion of characters or terms
that a standard QAC saves entering are given, respectively,
by the following equations:

CSSTD =
1

c(q)− c(q1)

t(q)−1∑
i=1

(c(q)− c(qi)) p(M i
STD) (3)

TSSTD =
1

t(q)− 1

t(q)−1∑
i=1

(t(q)− i) p(M i
STD) (4)

where t(q) is the number of terms of the intended query q,
c(q) is the number of characters and qi is the sub-query until
the i-th term. The same magnitudes for term-by-term QAC
are in turn given by the following equations:

CSTBT =
1

c(q)− c(q1)

t(q)−1∑
i=1

(c(qi+1)− c(qi)) p(M i
TBT ) (5)

TSTBT =
1

t(q)− 1

t(q)−1∑
i=1

p(M i
TBT ) (6)

Another variable of interest, related but different to the
number of saved terms would be the effort involved in exam-
ining the suggestions provided. We define it as the expected
number of suggestions examined by the user normalized by
the query length. In the case of standard QAC this quantity
is given by:

EFSTD =
1

t(q)− 1

t(q)−1∑
i=1

∑
j≤m(i)

p(Ej
i )
∏
i′<i

(
1− p(E

m(i′)
i′ )

)
(7)

while for term-by-term QAC is determined by:

EFTBT =
1

t(q)− 1

t(q)−1∑
i=1

∑
j≤m(i)

p(Ej
i ) (8)

These three metrics and their formulation for both QAC
mechanisms are used in the query log-based experiments in
the next section. Additionally, we will provide equivalent
measurements with real user data.

6. EXPERIMENTS
The observations made in Section 3 suggest that a term-

by-term approach to QAC might benefit the formulation
of queries in mobile search. To test the validity of this
proposal, we have conducted two different experiments. The
first one is a query log-based experiment in which one month
data from a commercial search engine is evaluated following
standard practices in the related work [3, 19, 20, 27] in which
both standard (STD) and term-by-term (TBT) most-popular
completion algorithms are evaluated with the metrics defined
in Section 5. The second experiment consists in a user study
in which a set of users was asked to perform a series of query
formulation tasks with the assistance of both methods in
their mobile devices.

6.1 Mobile Query Log-Based Evaluation
6.1.1 Setup

We have performed an evaluation of the compared QAC
methods using a query log from a commercial search engine.
In particular, our query log for this evaluation consists of
queries submitted from mobile devices to Yahoo, a major US
search engine. We collected a set of queries submitted from
mobile devices in one month period. For efficiency reasons,
we have discarded queries having more than 8 terms. The
data from the first 20 days was taken as training to build
the query-term graph, while a random sample of 41 million
queries from the remaining period has been used for test.

We have created two implementations of the systems de-
tailed in Section 4, namely the most-popular completion
for both standard and term-by-term QAC, using the data
from the training subset. Although more complex QAC
mechanisms have been proposed in the state of the art (see
Section 2), many experimental evaluations acknowledge that
the simpler most-popular completion approach offers com-
petitive performance at the smallest implementation cost [3,
15, 20, 24]. Indeed, we believe that, for the purpose of our
work, the improvements of more elaborate QAC techniques
do not alter the comparison between the standard and our
term-by-term QAC variants.

For testing purposes, an alternative implementation of the
term-by-term QAC in which terms are picked from whole-
query completions in the order determined by the rank of
the latter was also considered. Even when this approach
outperforms the standard QAC with respect to the considered
metrics, it performs worse than our proposed, more efficient
term-by-term QAC from Section 4. Thus, we do not include
the results for this alternative system.

The evaluation of the remaining two systems is based on
common assumptions found in prior work [3, 19, 20, 27]. In
particular, each query in the test both serves as simulation
of user behavior – our simulated user enters sequentially
the terms of the query to activate the QAC mechanism –
and as gold standard – only suggestions matching the rest
of the query are considered as satisfactory. In this setting,
the suggestion lists are composed of N = 10 completions
each. As previously stated in Section 5, we assume that the
probability of examining a suggested completion is reciprocal
to its position (more precisely, p(Ej

i ) = 1/(j + 1)) for both
standard and term-by-term QAC.

6.1.2 Results
The outcomes of our evaluation are found in Tables 3

and 4. Since our two compared most-popular completion



CS TS EF

N STD TBT STD TBT STD TBT

17,853,330 0.1759 0.2111 0.1761 0.2216 1.5206 1.3225

t
(q

)

2 3,573,019 0.0641 0.0745 0.0641 0.0745 1.8143 1.7833
3 5,081,503 0.1414 0.1859 0.1416 0.1939 1.5825 1.4066
4 4,542,236 0.2021 0.2504 0.2057 0.2657 1.4311 1.1837
5 2,657,039 0.2510 0.2913 0.2518 0.3073 1.3444 1.0566
6 1,227,555 0.2858 0.3147 0.2804 0.3329 1.3014 0.9787
7 517,222 0.3189 0.3312 0.3068 0.3490 1.2609 0.9298
8 254,756 0.3633 0.3475 0.3481 0.3639 1.1857 0.8850

dl
o
g
1
0
f
(q

)e

0 9,838,824 0.1672 0.2047 0.1677 0.2158 1.5457 1.3409
1 7,100,953 0.1787 0.2138 0.1789 0.2243 1.5110 1.3141
2 833,071 0.2393 0.2523 0.2353 0.2577 1.3507 1.2092
3 75,054 0.3292 0.3168 0.3262 0.3205 1.0822 1.0096
4 5,149 0.4286 0.3926 0.4278 0.3960 0.7754 0.7760
5 265 0.4671 0.4371 0.4672 0.4397 0.6497 0.6463
6 14 0.4838 0.4595 0.4810 0.4613 0.6065 0.5774

Table 3: Results for the set of previously seen queries in
the mobile query log-based evaluation. Corresponding
plots (for TS and EF) on the right.
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N CSTBT TSTBT EFTBT

24,311,303 0.0517 0.0618 1.0757

t
(q

)

2 2,852,182 0.0031 0.0031 1.6524
3 5,172,474 0.0306 0.0365 1.3235
4 5,781,961 0.0549 0.0648 1.0679
5 4,583,313 0.0703 0.0828 0.8961
6 2,962,515 0.0766 0.0918 0.7802
7 1,819,564 0.0766 0.0941 0.6993
8 1,139,294 0.0743 0.0930 0.6377

dl
o
g
1
0
f
(q

)e 0 22,761,496 0.0507 0.0607 1.0683
1 1,542,835 0.0672 0.0772 1.1828
2 6,718 0.0666 0.0753 1.3203
3 245 0.0671 0.0768 1.3680
4 9 0.0784 0.0741 1.3415

Table 4: Results for the set of previously unseen
queries in the mobile query log-based evaluation. Cor-
responding plots (for TS and EF) on the right.
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systems cannot suggest queries that are not present in the
training set [22], we first divide the random sample of the test
set into queries that appeared in the training set (Table 3)
and new queries (Table 4). In particular, as the standard
most-popular completion algorithm is not able to provide
successful suggestions according to our evaluation method-
ology, Table 4 does not include its outcomes, as they are,
as expected, completely unsatisfactory. For the remaining
outcomes, we show the results of the characters saved (CS),
terms saved (TS) and effort (EF) metrics according to the
global average for unique queries and, also, detailed accord-
ing to two different criteria: the number of terms of the final
queries t(q) and the frequency of them f(q).

The results for previously seen queries in Table 3 show
some of the advantages of our term-by-term approach, namely
an average higher number of saved characters and terms
with a smaller effort in terms of the number of suggestions
explored. This can be already observed in the average over
the almost 18 million queries in our test subset. A more
detailed analysis can be done with respect to the number of
terms and frequency of the queries.

Regarding the number of terms of the queries, we can
first observe that the normalized number of saved characters
and terms increases with the length of the final query for
both compared approaches, while the relative effort decreases.

This is expected as the longer the query is, the more specific
it is so that popular existing completions match it. When
comparing between approaches, the global trend shows that
the term-by-term approach provides in general more saved
characters and terms with less effort. Regarding CS and TS,
we see that both methods have a similar performance for
queries of size 2, although the gap between them is larger for
longer queries with the exception of the queries with 8 terms,
in which the performance is again similar. This is not the
case of the effort metric, in which the relative improvements
of our method over the standard QAC increase along with
the length of the queries.

When we analyze our results in terms of the frequency of
the queries, these illustrate the performance of both compared
approaches for different levels of query popularity, showing in
particular that our method works better than the standard
one for long-tail queries and similarly for more popular ones.
A common trend for both methods is that, the more popular
the query is, the better both systems work in terms of the
considered metrics. This outcome is expected as both systems
are based on providing the most popular completions in the
past. When comparing between systems by query frequency
by saved characters and terms, the results indicate that
our term-by-term method is better that the standard most-
popular completion for not so popular queries (frequency



Figure 3: Examples of the search interface for the user study for the same search task with standard (left)
and term-by-term (right) QAC.

less than or equal to 100 times), while for highly popular
(and easier to predict) queries the standard most-popular
completion method is slightly better. In any case, the effort
involved in the term-by-term method is always smaller than
in the standard approach, although the differences are smaller
the more frequent the query is.

Finally, in Table 4 we show the results of our term-by-term
most-popular completion approach for queries in the test
subset that did not appear in the previous training subset.
As previously explained, the results for the standard most-
popular completion are not included here as this method,
according to this offline evaluation methodology, is unable to
provide satisfactory suggestions, given that their suggestions
never match completely the intended query. However, our
term-by-term method is able to assist the user even in such
unfavorable scenario as it is still able to suggest terms that
matches prefixes of unseen queries. As the results show,
the number of saved characters and terms in this setting is
much smaller than the values obtained from the evaluation
previously seen queries. For instance, for unseen queries of
two terms our system is practically incapable of providing
any valid suggestion, although the success ratio improves for
longer queries. In fact, for longer queries, our term-by-term
system seems to be of some help as it successfully suggest
terms in the beginning of longer queries. In terms of effort, we
see smaller values than that of the case of seen queries. This
is expected, since as soon as the system reaches a sub-query
outside the query-term graph it stops providing suggestions.
Contrary to the results in the previously seen queries, the
frequency of the queries does not seem to affect significantly
the number of saved characters and terms of them, although
it has an influence on the effort, which increases for more
popular queries.

6.2 User Study
6.2.1 Setup

We provide an additional perspective of the performance
of our term-by-term approach in terms of a controlled user
study. Based on data from the same query log for a longer
period of three months, we have built another query-term
graph and implemented a web-based QAC interface adapted
to mobile browsers. It implements both standard and term-
by-term most-popular completion algorithms showing N = 5
possible completions after a whole term has been entered.
The interface logs every relevant interaction of the users
with the system: when suggestions were shown, if they were
rejected or accepted (and the position of the accepted com-

# description

1 Should I buy and iPad or a Samsung tablet?
2 Buy the ”Breaking Bad” series in DVD.
3 Recipe for strawberry cupcakes.
4 What to see in Barcelona.
5 Upcoming Taylor Swift concerts in Europe.
6 When does the fifth season of Game of Thrones start?
7 Price of the tickets of The Lion King musical in Broadway.
8 Will Hillary Clinton run for president in 2016?
9 Cast of The Expendables 3.

10 What is the migration route of the monarch butterfly?
11 The weather forecast in Los Angeles for the next week.
12 Price of Tesla Motor cars.
13 Last news about the Ukraine crisis in the last month.
14 Which countries are affected by the ebola outbreak?
15 Find funny pictures of cute cats.
16 How to take a screenshot on Android phones.
17 Find a cheap laser print.
18 Resources for learning arabic language.
19 What is the highest mountain in California?
20 How many Starbucks are there in San Francisco?

Table 5: Search tasks of the user study.

pletion) and when the user submitted the resulting query. In
the case of standard most-popular completion, we allowed
the users to keep formulating their queries even if they ac-
cepted a whole-query completion. See Figure 3 for examples
of the query formulation interface. Users were asked to ac-
cess the interface with their mobile devices and complete
a series of query formulations for the 20 tasks in Table 5.
The formulations were shuffled to counter-balance any order
effect. Users were not aware of which completion mecha-
nisms were being tested, and they had freedom to ignore
query assistance if they wanted to. Each task was repeated
for each QAC method. In total, we recruited a total of 25
evaluators who performed a total of 968 query formulations
(some users did not complete all the formulations). From
these formulations, we discarded one term queries and for-
mulations that were not performed using both methods for
the same search tasks, resulting in 350 pairs of formulations
where both compared methods have been used by the same
user to complete the same task. Despite its small scale, this
study allows us to measure certain variables of interest of
QAC systems that cannot be otherwise estimated by a query
log-based evaluation.

From the recorded interactions of our test users we have
measured a series of variables related to the effectiveness
of both QAC completion approaches. First, we took some
measurements related to the operation of the QAC methods
themselves, namely the number of times they were activated
(suggestions), the average ratio of accepted suggestions
(accepted) and the average position of the accepted com-



t event query

S
T
D

0 suggest ipad
1,571 reject ipad vs
1,890 suggest ipad vs

10,353 reject ipad vs samsung
10,355 suggest ipad vs samsung
15,432 accept (3) ipad vs samsung galaxy tablet
15,444 suggest ipad vs samsung galaxy tablet
17,475 submit ipad vs samsung galaxy tablet

T
B
T

0 suggest ipad
2,048 reject ipad vs
2,050 suggest ipad vs
6,969 accept (2) ipad vs samsung
6,977 suggest ipad vs samsung
8,853 accept (1) ipad vs samsung galaxy
8,860 suggest ipad vs samsung galaxy

10,213 accept (2) ipad vs samsung galaxy tablet
10,235 suggest ipad vs samsung galaxy tablet
11,366 submit ipad vs samsung galaxy tablet

Table 6: Example of a query formulation task with
both methods for a same user. For each formulation
process, we indicate the sequence of events starting
from the first activation of the QAC mechanism with
the elapsed time and the state of the query. For ac-
ceptance of suggestions, the position of the accepted
completion is indicated.

pletion (accept_pos). The second block of measurements
is related to the benefits perceived by the user which were
measured by our query log-based evaluation, namely the
number of saved terms (terms_saved), the average number
of completions examined for each suggestion assuming that
users examined sequentially all listed completions until find-
ing the right one (effort) and, also, the number of saved
characters (chars_saved). The third set of measurements
considers the time (in seconds) spent for formulating queries,
including the total time of query formulation (total_time)
and the average time taken to accept or reject suggestions
(accept_time and reject_time, respectively). Finally, the
last set of measurements evaluates the properties of the re-
sulting queries in terms of the number of characters of the
submitted queries (query_chars) and their number of terms
(query_terms).

6.2.2 Example
Before providing a detailed discussion of the results of

the user study, we show in Table 6 a selected example that
illustrates the differences of the standard and term-by-term
QAC methods for assisting the same user in formulating
the search task number 1 in Table 5. As we can see, in
this particular example the user ends up formulating the
same query when using either mechanisms. However, in
the process of formulating the final query we see significant
differences between one method and the other.

On the one hand, in the formulation process assisted with
the standard QAC method, we see that the user rejects the
two first suggestions shown and only accepts the third one
which completes the last two terms of the query that is
submitted. We also observe how the user takes considerable
time exploring the list of suggestions and is forced to go
to the third position of the accepted suggestion to find the
desired completion. In this case, the system is able to save
the user entering two out for four terms of the query (not
including the first term).

One the other hand, the formulation with help of the
term-by-term QAC mechanism shows the advantages of our
method for this particular user and search task. As we

property STD TBT

suggestions 2.9514 3.1486 6.68%
accepted 0.3661 0.4029 10.06%
accept_pos 2.0908 1.9601 -6.25%

chars_saved 0.2386 0.2551 6.91%
terms_saved 0.2753 0.2838 3.08%
effort 3.9221 3.7924 -3.31%

total_time 12.6345 12.6133 -0.17%
accept_time 3.3058 2.8943 -12.45%
reject_time 4.8333 4.4531 -7.87%

query_chars 22.9686 22.6200 -1.52%
query_terms 3.4600 3.3914 -1.98%

Table 7: Results of the user study. Statistically sig-
nificant relative improvements of the term-by-term
method (Wilcoxon signed-rank test with p < 0.05)
are marked in bold.

can see, the QAC system is activated a total of five times
(one more than in the standard method), for which the
completions shown are accepted in three cases. The position
of the accepted completions is, moreover, very low (first and
second positions only), which accounts for a faster decision
time. In the end, the user is able to save typing three terms
of the intended query.

6.2.3 Results
The global results of the user study can be found in Ta-

ble 7. As it can be seen, a number of statistically significant
differences are observed between methods (Wilcoxon signed-
rank test with p < 0.05). In the first block of results, which
deal with the success of the QAC method under testing,
we see that the term-by-term method is activated a 6.68%
more times than the standard one. This is expected as the
standard mechanism, by providing longer completions, is
expected to be used less for an average task. Regarding the
success of the suggestions, we see that completions provided
by our term-by-term method have a higher ratio of accep-
tance. Also, the average position of the accepted completions
is lower (i.e. appears higher in the list of suggestions) than
in the standard method, although the difference is not found
statistically significant.

The second block of results relates to the direct measure-
ment of the metrics defined by the user model in Section 5, to-
gether with the number of characters saved. In general these
results provide a weak confirmation of our claims and obser-
vations from the query log-based evaluation, showing that
more terms are saved with a smaller effort, but with a much
smaller relative difference than in the previous evaluation and
with significant differences found only in the effort metric.

A third category of results measure the amount of time
involved in exploring suggestions and the total time involved
in query formulation. The outcomes indicate that users tend
to spend a similar amount of time to formulate the queries
in both methods, although the time required to accept or
reject suggestions is smaller in the term-by-term approach.
The latter observations can be explained by the fact that the
suggestions are typically much shorter than in the standard
case, which facilitates a faster exploration of the suggestions.

Finally, a last set of observations comprises the properties
of the submitted queries, in terms of the number of characters
and terms. As the results show, queries formulated with the
assistance of the standard QAC method seem to be slightly
longer (both in characters and terms) than the queries with
help of the term-by-term method, although the difference



does not seem to be statistically significant. By taking a
closer look at the submitted queries between methods, we
see that in 37% of the cases the pairs of queries for a same
user in a search tasks were identical for both methods and,
for the pairs of different queries, the normalized Levenshtein
distance was in average 0.38, which indicates that the queries
were indeed different but shared similar terms.

7. CONCLUSIONS AND FUTURE WORK
In this paper we tackled the problem of using query auto-

completion mechanisms in mobile search. We identified a
series of inconveniences of standard whole-query completions
caused by the limitations of text input and display in mobile
devices such as smartphones and tables. In order to alleviate
these issues, we proposed a term-by-term QAC mechanism
that suggests, rather than whole-query completions, one
term at a time. We described an implementation of this
term-by-term QAC system that uses a structure called query-
term graph, which allows an efficient storage and retrieval
of query completions. We also proposed a user model for
the interaction with QAC systems based on prior work from
which we derive metrics to asses the efficiency of QAC in
query log-based evaluations. An experiment with a query log
from a commercial search engine demonstrated that our QAC
mechanism significantly outperforms well-established state-of-
the-art standard auto-completion mechanisms. Furthermore,
a small user study provided insights about and confirmed
the benefits of our system throughout a wide number of
evaluation metrics.

We envision two main directions for future work. First, we
want to enhance our term-by-term QAC method by incorpo-
rating additional sources of information. On one hand, we
believe that most of the ideas of more recent proposals for
standard QAC – such as those described in Section 2 – can
be easily adapted to our approach. On the other hand, we
will explore enhancements specific to our query-term graph.
In particular, the detection and merging of sub-paths of the
graph [1] (as shown in Figure 2) could be a way not only to
reduce the size of the structure, but also to discover unseen
query formulations that ultimately improve the prediction
capabilities of our system. Also, we will extend our method
to provide suggestions that may also include short phrases.

As a second research direction, we want to study the online
user behavior of our auto-completion paradigm in the context
of a commercial mobile search engine, observing real traffic
and a large number of user interactions, to shed light on the
particularities of different auto-completion methods in a live
setting. Furthermore, we want to study the characteristics
of queries formulated with the assistance of both standard
and term-by-term QAC methods in terms of the quality of
the retrieved search results.
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