Scalable Top-K Retrieval with Sparta

Gali Sheffi
galish@cs.technion.ac.il
Technion
Haifa, Israel

David Carmel
david.carmel@gmail.com
Amazon
Haifa, Israel

Abstract

Many big data processing applications rely on a top-k retrieval
building block, which selects (or approximates) the k highest-
scoring data items based on an aggregation of features. In
web search, for instance, a document’s score is the sum of its
scores for all query terms. Top-k retrieval is often used to sift
through massive data and identify a smaller subset of it for
further analysis. Because it filters out the bulk of the data, it
often constitutes the main performance bottleneck.

Beyond the rise in data sizes, today’s data processing sce-
narios also increase the number of features contributing to the
overall score. In web search, for example, verbose queries are
becoming mainstream, while state-of-the-art algorithms fail
to process long queries in real-time.

We present Sparta, a practical parallel algorithm that ex-
ploits multi-core hardware for fast (approximate) top-k re-
trieval. Thanks to lightweight coordination and judicious con-
text sharing among threads, Sparta scales both in the num-
ber of features and in the searched index size. In our web
search case study on 50M documents, Sparta processes 12-
term queries more than twice as fast as the state-of-the-art. On
a tenfold bigger index, Sparta processes queries at the same
speed, whereas the average latency of existing algorithms
soars to be an order-of-magnitude larger than Sparta’s.

CCS Concepts < Software and its engineering Multi-
processing / multiprogramming / multitasking;
e Information systems Web search engines; Top-
k retrieval in databases; Distributed retrieval; e
Computing methodologies Parallel algorithms;
Concurrent algorithms; Distributed algorithms.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions @acm.org.

PPoPP 20, February 22-26, 2020, San Diego, CA, USA

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-6818-6/20/02. .. $15.00
https://doi.org/10.1145/3332466.3374522

Dmitry Basin
dbasin@verizonmedia.com
Yahoo Research
Haifa, Israel

Edward Bortnikov
ebortnik@verizonmedia.com
Yahoo Research
Haifa, Israel

Idit Keidar
idish@ee.technion.ac.il
Technion and Yahoo Research
Haifa, Israel

Keywords parallel computing, multi-threading, performance,
information retrieval, web search, top-k search

ACM Reference Format:

Gali Sheffi, Dmitry Basin, Edward Bortnikov, David Carmel, and Idit
Keidar. 2020. Scalable Top-K Retrieval with Sparta. In 25th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Pro-
gramming (PPoPP ’20), February 22-26, 2020, San Diego, CA,
USA. ACM, New York, NY, USA, 12 pages. https://doi.org/10.
1145/3332466.3374522

1 Introduction

Interactive big data processing is proliferating with applica-
tions like information retrieval, web search, data mining, data
analytics, and more [22]. Such services often need to identify
relevant data based on multiple features, or query ferms. For
instance, a real-time analytics engine (e.g., [5]) might keep
daily lists of application access statistics — the number of users
accessing every application on a given day. A query may then
retrieve the popular applications over a ten-day period by
aggregating over ten lists. Real-time analytics databases offer
a TopN search primitive to facilitate such queries [6].

In modern use cases, datasets are becoming larger and
queries exceedingly involve more features. A case in point
is web search: While early days web queries were short (2.4
terms on average [32]), modern search experiences such as
query suggestion, reformulation, and conversational inter-
faces, stimulate users to submit much longer queries. E.g.,
more than 5% of voice search queries exceed 10 terms [20].

Interactive data processing usually involves two stages [38].
The first is top-k retrieval, roughly matching the top-k docu-
ments most relevant to the query (e.g., k = 1000) based on a
simple multi-feature score. It is followed by a more elaborate
analysis. The first stage sifts through huge volumes of data
and therefore dominates the execution time.

Yet obtaining the exact top-k matches out of a large cor-
pus is typically too slow to meet real-time latency require-
ments, especially as the number of searched features be-
comes large. Luckily, perfect results are usually not essen-
tial, as later processing stages can work with approximate
results [6, 16, 25, 38]. Based on this observation, we focus on

https://doi.org/10.1145/3332466.3374522
https://doi.org/10.1145/3332466.3374522
https://doi.org/10.1145/3332466.3374522

PPoPP 20, February 22—26, 2020, San Diego, CA, USA

approximate (sometimes called non-safe) query evaluation,
tuned to achieve a certain high recall (e.g., 97% or more).

In this paper, we accelerate approximate top-k retrieval
on multi-core hardware. We design and implement Sparta —
Scalable PARallel Threshold Algorithm. Sparta’s design is
inspired by the seminal Threshold Algorithm (TA) by Fagin
et al. [18], which retrieves the top-k objects from a database
based on an aggregation of features that may reside in mul-
tiple nodes. Transforming TA into an efficient concurrent
algorithm is challenging because coordination around shared
state can become a major bottleneck. On the one hand, sharing
state among threads is essential in order to benefit from TA’s
early stopping feature. Indeed, we show that a shared-nothing
(partitioned) parallelization performs two times worse than
even a single-threaded implementation. On the other hand,
a naive attempt to parallelize TA using shared memory also
results in even worse performance than the sequential algo-
rithm. Sparta instead judiciously shares pertinent information
among threads, thus keeping the synchronization overhead
and memory overlap low.

We evaluate Sparta via a web search case study, comparing
Sparta to various TA variants and state-of-the-art web search
algorithms. Our results show that Sparta scales well with both
corpus size and query length. E.g., on the 50M-document
TREC ClueWeb(09B dataset [15], Sparta can serve 12-term
queries within less than 200 ms, whereas today’s best algo-
rithms take at least twice as long. On a 500M-document index,
Sparta’s average latency is virtually unchanged, whereas the
next best algorithm (one of TA variants) takes over a second.
Sparta’s throughput on a production-grade query mix (with
the query length distribution from [20]) is 20% higher than
that achieved by the best previous algorithm on the small
corpus, and 5x higher on the large one.

2 Problem Statement: Top-k Retrieval

We focus on the fundamental primitive of top-k retrieval,
widely used in information retrieval, web search, data mining,
data analytics, and more [22]. This primitive is commonly
used for the initial selection of documents over which a more
refined search is performed [38].

Given a query g, the primitive retrieves the top k scored doc-
uments (data items) in a given corpus according to a scoring
function score(D, q). A query is given as a list of terms (fea-
tures). Given an m-term query q = ti, . .. t,, and a document
D, the score of D for query q is score(D, q) = X%, ts(D, t;)
where ts(D, ;) is the term score of term ¢; to document D.

An exact top-k retrieval primitive returns the k documents
with the highest scores for the query. An approximate solution
returns k results that approximate the top k. Let L be the exact
list of top-k documents, and let A be an approximate result.
The quality (or accuracy) of A is measured by its recall, which
is the fraction of L included in A.

Sheffi, et al.

3 Background

We provide background on state-of-the-art top-k algorithms
used in web search and on Fagin et al.’s TA [18].

3.1 State-of-the-art Web Search Algorithms

Search algorithms use a preprocessed inverted index of the
corpus. The index is organized according to terms and holds a
posting list of all documents associated with each term. Top-k
retrieval algorithms typically traverse posting lists sequen-
tially. They track the top-k documents among those scored
so far in a heap. A variable © — called the threshold — holds
the score of the k-th (lowest-ranked) document in the heap;
any document whose score is below this threshold is not a
candidate for the final top-k list. As long as the heap contains
fewer than k documents, © remains zero.

For big datasets, only a small portion of the index can
reside in RAM at a given time. The I/O overhead is kept
low by fetching contiguous chunks of the lists from disk.
Additionally, algorithms use various heuristics to reduce the
number of documents whose score needs to be evaluated.

Popular production top-k algorithms, e.g., MaxScore [33,
37], WAND [14], and Block-Max WAND (BMW) [17], simul-
taneously scan all relevant posting lists in order of document
id, fully scoring each document before moving to the next
one. We refer to these as document-order algorithms.

The disadvantage of document-order algorithms is that
high-scoring documents may be discovered late in the tra-
versal because document ids are not correlated with query
relevance, and so the algorithm does not always produce use-
ful partial results before it completes. This is mitigated by
score-order algorithms (sometimes called impact-order), e.g.,
JASS [25], which traverse posting lists in decreasing order of
term score. These algorithms accumulate the score of each
document throughout the traversal, and thus document scores
may be inaccurate at first and improve over time. Score-order
algorithms have been shown to be slower but have more pre-
dictable performance than document-based ones [16].

3.2 The Threshold Algorithm

TA [18] was originally presented in a database setting, where
the partial scores of an item (term scores in our context) reside
at different nodes. We cast it here in the IR setting, where
partial scores are obtained from posting lists rather than nodes,
and query evaluation occurs on a single machine.

TA is a score-order algorithm. To evaluate a query q =
t1,...tm, it traverses the posting lists of the m query terms
in an interleaved manner. An upper bound vector, UB[m],
bounds the term scores of documents that were not yet vis-
ited in each term’s posting list. Figure 1 shows an example
traversal with m = 3. The scores of the last traversed items in
each list are UB[1] = 38, UB[2] = 32, and UBJ[3] = 41.

TA also maintains a threshold ® — the score of the k-th
document in the heap. It stops when no candidate’s score can

Scalable Top-K Retrieval with Sparta

UB posting lists
id: 23 id: 18 id: 57 . id:10 | ;] id:80

38 t1_)ts:56—)ts:38-)ts:11 > ts: 9 ts: 8
| A

(] id: 10 id: 57 id: 80 id: 23
32|t _)ts:73_)tsztio_)ts:&m_> > ts:7
— t
41 (] id: 57 id: 23 id: 10 id: 80] id: 18

t3 > ts: 41 [T ts:28 [T ts:15 [T | tsi14 [T ts:8 [

)

PPoPP 20, February 22—26, 2020, San Diego, CA, USA

RA doc heap NRA doc heap
id: 18 id: 80
score: 46 Ib: 32
id: 23 id: 80 id: 18 id: 23
score: 91 score: 54 Ib: 38 Ib: 56

id: 57 id: 10 id: 57 id: 10
score: 92 score: 97 Ib: 81 Ib: 73

Figure 1. Traversal example in RA and NRA variants of the Threshold Algorithm (TA). Posting lists are sorted by decreasing
term scores. Vertical arrows depict iterator positions. UB holds upper bounds on the terms’ contributions to scores of untraversed
documents. The RA document heap is ordered by full document score, and the NRA heap by partial score (lower bound).

exceed ©. We implement approximate variants of TA by stop-
ping whenever the heap does not change for some parameter
A ms. Either way, TA’s output is the set of documents in the
heap. TA has two flavors, which we now describe.

Random Access (RA) The RA variant assumes that given a
document id, we can use random access in order to obtain all
its term scores and compute its total score. It thus computes
the full score for every document it encounters. If the score is
higher than the threshold, it is inserted into the heap. Then, ®
and the corresponding term’s UB are updated. The algorithm
stops when the following upper bound stopping condition
holds:

m
UBStop = Z UB[i] < ©. (1)
i=1

At this point, no non-traversed document can achieve a
high enough score to be included in the heap.

Note that being a score-order algorithm, TA is amenable
to such early stopping: high scoring documents are likely to
be discovered early. This is in contrast with document-order
algorithms, in which finding high scoring documents remains
equally likely throughout the execution.

Unfortunately, random access is costly, in particular for
large datasets that do not reside fully in RAM. Whereas a
sequential posting list traversal requires infrequent I/O (at the
end of each data block) and exhibits cache-friendly locality of
access, each random document access entails an I/O request
and a cache miss. An additional drawback is RA is the need
to maintain a secondary index by document id in addition to
the one sorted by term score, which doubles its footprint.

No Random Access (NRA) The alternative NRA method
refrains from computing the full score for each traversed
document and instead maintains lower and upper bounds for
candidate documents based on partially computed scores.
For a document D and a term ¢;, we define the upper bound
UB(D, t;) to be the term score ts(D, t;) if it has already been
encountered, and otherwise UBJi], which provides an up-
per bound on ¢;’s term score. We similarly define its lower
bound LB(D, t;) to be the term score if it is known, and zero

otherwise. We then aggregate these scores to compute the
document’s upper and lower bounds:

m m
UB(D) £ > UB(D,t;); LB(D) £ " LB(D, ;).
i=1 i=1
In Figure 1, UB(Ds;7) = 38 + 40 + 41 = 119 and LB(Ds;) =
40 + 41 = 81, whereas its actual score is 11 + 40 + 41 = 92.
NRA maintains the top-k heap according to the document
lower bounds, and © holds the smallest value among them.
NRA'’s safe variant stops when (1) the UBStop stopping
condition of RA holds, and (2) all the visited documents that
are not in the heap have upper bounds lower than or equal
to ©. These two conditions are complementary: (1) ensures
that no non-traversed documents are among the final top-k,
whereas (2) ensures the same for traversed documents that
are not among the current top-k.

4 Sparta

Sparta Like our aforementioned implementations of TA, it can
be safe or can be configured to provide approximate results
by stopping after the heap does not change for some A time.

4.1 Sparta Data Structures

name value

DocType (int id, int score[m], int LB)
docHeap init empty

C) init 0

UB[m] init oo

UB(D) " (D.score[i] > 0 ? D.score[i] : UB[i])
docMap init empty

heapUpdTime init now

done init false

termMap[m] init pointer to docMap
tmpDocMap init empty

Table 1. Sparta’s data structures and initial values.

Table 1 defines the data structures used by Sparta and Fig-
ure 2 illustrates them. As in NRA, the algorithm maintains the

PPoPP 20, February 22—26, 2020, San Diego, CA, USA

tmpDoc
DocType

207 134 308
term scores term scores term scores 207
[Js8]s0]) |[15]eof10]) |[23]77]]|

134

207 308

=

O=85 134

Figure 2. Sparta data structures. The docMap keeps track of
partially scored documents; tmpDocMap and termMap are
local partial copies of docMap.

current top-k results in a heap, docHeap, and its lowest value
in ©. It keeps UB is used for computing the documents’ upper
bounds as well as for checking NRA’s stopping conditions.

The hash map docMap maps document ids encountered
thus far to DocType objects. A DocType holds a vector of term
scores observed thus far for this document as well as a lower
bound on the document score computed as their sum. NRA’s
first stopping condition is checked according to Equation 1
and the second is checked as follows:

VD € docMap \ docHeap : UB(D) < ©.)

The stopping conditions are evaluated by a cleaner task,
which also checks the heap’s latest update time heap UpdTime
and sets the done flag once the algorithm can stop.

To reduce the synchronization overhead and improve cache
locality, Sparta uses two local data structures that hold par-
tial copies of the docMap, namely the termMap array with
a (local) hash map per term, and the trmpDocMap used by
the cleaner. The role of these will become evident when we
discuss synchronization and locality below.

4.2 Splitting the Work

When multiple threads evaluate documents in parallel, there is
high contention around docMap. To reduce it, we consider the
point in time when the first stopping condition (Equation 1)
holds. From this time on, no new document’s score can sur-
pass the lower bound of any document in the shared docHeap.
Therefore, adding new documents to docMap is no longer
helpful (a similar observation was made in [29]). On the other
hand, it is possible to shrink docMap by removing documents
whose upper bounds have been exceeded by ©. We exploit
this and stop sharing docMap among the threads once it is
sufficiently small, thereby eliminating the synchronization
overhead altogether.

Sparta’s pseudocode appears in Algorithm 1. It exploits up
to m worker threads per query but can run with fewer threads
if less are available. We divide posting list traversals to seg-
ments of size segSize and use a job queue to allocate posting

Sheffi, et al.

list segments to threads (line 2). The PROCESSTERM(i) func-
tion processes the next segment of term t;. A thread that
finishes its assigned segment inserts into the queue a new task
for scanning the next segment in the same term’s posting list
(line 25). Thus, we progress on all posting lists at the same
rate modulo the segment size. In case m threads are available,
a large segment size can be used.

We allocate an additional task to the CLEANER function
(lines 39— 48). This task is invoked once Equation 1 holds and
s0 docMap no longer grows. It serves two purposes. First, as
its name suggests, it removes entries that ceased to be top-k
candidates from docMap. Since Sparta is memory-intensive,
a smaller docMap allows it to run much faster; (a similar ob-
servation, in a sequential setting, was made in [19]). Second,
it determines when the algorithm can stop (line 46). It checks
the condition of Equation 2: once docMap is the same size as
docHeap we know that the two are identical because docMap
always includes all docHeap entries. At this point, docHeap
holds the top-k scored results, and stopping is safe. In addi-
tion, it checks whether the heap has not changed for A time
(the exact version is obtained by setting A = c0). Once the
algorithm stops, the main thread returns the heap’s contents.

4.3 Synchronization

Note that docHeap, UB, docMap, and DocType objects refer-
enced by them are accessed concurrently by multiple threads.
We need to protect such access to avoid inconsistencies. On
the other hand, reducing contention is crucial for performance.
Moreover, Sparta is a memory-intensive algorithm, and in
order to keep the memory access latencies low, it is para-
mount to exploit the CPU hardware cache, in particular, the
core-private L1 caches. We now explain how we synchronize
access to each of the shared variables in a way that reduces
contention and improves cache utilization.

Since at most one thread processes each term, no races arise
around updating UB entries, and no lock is needed. However,
all threads read all UB entries, and therefore frequent up-
dates can lead to frequent cache misses. In order to reduce
cache misses, instead of updating UB after each document
evaluation, the workers update it at the end of a segment tra-
versal (line 24). Note that delaying updates does not affect
correctness, it only slows down convergence.

Updates of docHeap and © are protected by a shared lock
(lines 27 and 38), which serializes all updates. To avoid races
around evaluating a DocType’s lower bound and inserting it
into docHeap, we update the lower bound in a lazy manner
while holding the global lock on docHeap: Every thread that
adds a document to the heap updates the lower bounds of all
heap documents (lines 30-32).

Before the first stopping condition (Equation 1) holds, mul-
tiple workers update docMap concurrently. We, therefore,
protect each hash bucket by a granular lock, which performs
better than the generic Java concurrent hashmap [1].

Scalable Top-K Retrieval with Sparta

PPoPP 20, February 22—26, 2020, San Diego, CA, USA

Algorithm 1 Sparta algorithm.

1: fori=1tomdo > processing m-term query
2 add PROCESSTERM(i) to job queue

3: spawn up to m threads to run jobs from queue

4: wait until UBStop > all candidates are in docMap
5: add CLEANER() to job queue

6: wait until done

7: return docHeap

oo

: procedure PROCESSTERM(i)
9: if UBStop A |docMap| < ® A termMap|i] = docMap then
> docMap is shrinking and small — create a local copy for term i

10: termMapl[i] < new hash map

11: for all D € docMap s.t. D.score[i] = 0 do

12: add D to termMap]i]

13: for j = 1 to segSize do

14: if done then return

15: (id, score) « next entry in ith posting list

16: D « termMap|i](id)

17: if D = L then > document missing
18: if ~UBStop then > hash incomplete
19: create new document object D

20: add D to termMap|i](id)

21: else continue

22: D.score[i] < score > update term score
23: if Z;."ZID.score[j] > © then UPDATE_HEAP(D)

24: UBJi] « score > update term’s upper bound
25: add PROCESSTERM(i) to job queue

26: procedure UPDATE_HEAP(D)
27: lock docHeap
28: if D ¢docHeap then

29: insert D to docHeap

30: for all d € docHeap do

31: dLB « Zj'ild.score[i]

32: move d to correct place in heap

33: if |docHeap| > k then

34: remove lowest scored doc

35: if |docHeap| = k then > set © to k'"* lowest score
36: O « lowest score in docHeap

37: HeapUpdTime < current time

38: unlock docHeap

39: procedure CLEANER

40: if |docMap| > ® then > shrink docMap

41: tmpDocMap < new hash map

42: for every doc D € docMap do

43: if UB(D) > ©® V D € docHeap then

44 add D to tmpDocMap > D is still relevant
45: replace docMap by tmpDocMap

> check stopping conditions; in exact version A = co
46: if |docMap| = |docHeap| v HeapUpdTime+A < now then
47: done « true
43: else add CLEANER() to job queue

The cleaner task starts removing elements from docMap
after it is guaranteed that no new entries are added to it. This
reduces the memory footprint and improves performance.
Nevertheless, constantly updating docMap would lead to fre-
quent cache invalidations at the tasks that read the map. To
avoid this, the global map is kept read-only most of the time,
while the cleaner works on a local copy: it repeatedly builds a
new map tmpDocMap, retaining docMap entries whose upper
bounds are higher than ® as well as ones that are included
in docHeap (whose upper bounds may be exactly ©). Once
tmpDocMap is ready, the cleaner replaces docMap with it via
a single pointer swing (flipping the global reference).

Access to docMap is a principal performance bottleneck
since it is frequently read by all workers. Initially, it is too
large to fit into local caches, and so the parallel execution
inherently requires global memory accesses. But thanks to the
cleaner’s work, docMap shrinks in the course of the execution.
Moreover, not all docMap entries are relevant for all terms — if
D’s term score for ¢; has already been computed, then a thread
handling term t; does not need to access D. Thus, the relevant
subset of docMap for each term eventually becomes small
enough to fit in its local cache. As long as the thread continues
to access the global docMap, it experiences massive cache
misses every time the cleaner replaces the global docMap.

But once it becomes small enough to fully fit in the local
cache, there is no need to keep using the global copy.

To this end, Sparta associates a local map replica, termMap,
with each posting list. termMap is created by the worker that
currently owns that posting list once docMap’s size drops
below a threshold @; in our implementation, ® = 10K entries.
In lines 11-12, we scan docMap and copy to termMap the
references to those DocType objects that do not contain the
score for the worker’s term yet. Once a termMap has been
created, every worker that handles its posting list uses it. Note
that since every posting list is accessed by at most one worker
at any given time, no synchronization is required.

4.4 Analysis

Sparta accesses posting lists in the same manner as NRA does,
and stops only when NRA’s stopping conditions hold. Thus,
like NRA, its exact version (where A = o0) is safe and returns
the top-k results.

In terms of performance, NRA was shown to be instance-
optimal when random access is impossible [18], namely, its
number of accesses to posting list entries is asymptotically
close the optimum for every problem instance. This property
holds for NRA as long as the rates in which different threads
access different posting lists are within constant multiples
of each other [18], because in this case, a thread that “runs

PPoPP 20, February 22—26, 2020, San Diego, CA, USA

ahead” without knowing it should stop only accesses a con-
stant factor more entries than the algorithm needs to. Sparta
differs from NRA in deferring updates to UB until the end
of the segment, which may further delay stopping for seg-
Size additional posting list accesses. Since segSize is constant,
Sparta is also asymptotically instance-optimal under the same
assumptions as NRA.

5 Case Study: Web Search

We conduct a case study of top-k query processing on a
web dataset. We compare the performance of Sparta to the
following multiprocessor algorithms:

pBMW [31] — parallel BMW, the best-in-class paral-
lelization of a document-order top-k algorithm;

pJASS [28] — a recent parallelization of the JASS [25]
score-order retrieval algorithm;

PRA - a parallel implementation of RA;

SNRA - a shared-nothing parallelization of NRA; and

PNRA - a naive shared-state parallel implementation of
NRA.

In order to crystallize the comparison among the core al-
gorithms, we abstract away other contributors to the wall-
clock latency, e.g., index compression. As recent studies show,
given state-of-the-art compression techniques, the impact of
decompression on end-to-end performance is marginal (e.g.,
up to 6% with QMX-D4 compression [26]).

We focus on disk-resident search indexes. We also experi-
mented with RAM-resident indexes, and in all cases, all algo-
rithms except pRA got similar results, which is not surprising
given that the algorithms traverse posting lists sequentially.
These results are omitted for lack of space.

5.1 Methodology

We study algorithms in terms of query latency and through-
put attainable at a single multi-core server. We use mid-tier
industry-standard hardware — a 12-core Intel Xeon E5620
with 24GB RAM and 1TB SSD drive.

The benchmarking environment and the algorithms are im-
plemented in Java. A benchmark driver draws queries from an
input queue and submits them to the algorithm being tested,
which uses a thread pool for intra-query parallelism. The dri-
ver controls the pool size. When testing latency, the entire
thread pool is used by a single query. In the throughput eval-
uation mode, queries are scheduled first-come-first-served,
and a new query is scheduled for execution (i.e., assigned
threads) once there are idle threads with no outstanding work
from currently executing queries. All queries scheduled for
execution equally share the thread pool.

In all experiments, the appropriate index (either in docu-
ment order or in score order) is pre-built offline and stored
on disk uncompressed as a collection of binary files, each
storing a shard of data partitioned by term. The benchmark
environment memory-maps the contents of these files via the

Sheffi, et al.

MappedByteBuffer API [2]. Prior to each experiment, we
flush the file system’s page cache so all pages are physically
read from disk during the experiment.

We experiment with two document corpora. The first is the
TREC dataset, Category B (ClueWeb09B), which is widely
used for information retrieval research [15]. This dataset
includes approximately 50M web documents and takes up
roughly 30GB of original content, uncompressed.

The second corpus is a synthetic 10x scale-up of ClueWeb,
named ClueWebX10, which we created to explore the algo-
rithms’ scalability with the dataset size. The 450M synthetic
documents in ClueWebX10 are generated as follows. Each
document is a bag of words drawn from the original ClueWeb
dictionary (the order is immaterial for our document scoring
function) so that the number of occurrences of a term t; with
an original global frequency rate of F(¢;) is drawn from a
geometric distribution with a stopping probability of 1 — F(t;).
This process preserves the term frequency distribution of
ClueWeb in ClueWebX10.

We use the popular Lucene open-source search engine [3]
for preprocessing the index to generate posting lists; this
includes text tokenization, posting list maintenance, and term
statistics retrieval. We score documents using a standard tf-idf
score function with document length normalization [10].

We draw queries from the public AOL search log [4]. For
each number of terms from 1 to 12, we independently sam-
ple 100 queries of this length uniformly at random from the
AOL log. We also experimented with a query log of another
commercial web search engine; this experiment produced
statistically similar results, and so we omit them here.

We use k = 1000, based on the assumption that simple
tf-idf retrieval is the first phase of multi-stage ranking, which
may require large values of k for effectiveness [38]. (Indeed,
Crane et al. [16] report that the classical AP and RBP quality
metrics are close to optimal with this choice of k, for multiple
datasets.) Experiments with k = 100 produced qualitatively
similar results, which we omit for lack of space.

5.2 Implementation

Posting lists are stored as contiguous uncompressed arrays;
PRA also stores its secondary index (document id to position
in the posting list mapping) in the same form. Term scores
(namely, tf-idf) are stored in the posting lists as integers,
scaled by 10° and rounded as in [13]. Using integer arithmetic
instead of floating-point significantly speeds up document
evaluation.
The specific algorithm implementations are as follows.

5.2.1 State-of-the-art parallel search algorithms

pBMW Our implementation of pPBMW closely follows the
description in [30]. The algorithm partitions the execution
of the sequential BMW [17] among multiple threads. Each
thread handles a distinct subset of documents, and computes

Scalable Top-K Retrieval with Sparta

a local top-k result. The algorithm then merges the partial
results to obtain the final top-k.

Similarly to Sparta, pPBMW’s threads obtain jobs from a
common job queue. Here, a job defines a range of document
ids to scan. We set the number of jobs to be twice the number
of worker threads, and assign equal-size ranges to all threads.
This partition results in well-balanced executions in which
the whole worker pool is utilized most of the time.

Each thread maintains a thread-local heap with the current
top-k documents. (We also experimented with a shared heap
and got inferior results; a similar finding was reported in [30].)
Similarly, each thread T maintains a local threshold ©1 for
filtering heap insertions; O is at least the lowest score in the
local heap, but may be higher due to the progress of other
threads. Thread T periodically compares © to its local Ot
and promotes the smaller of the two to max(@r, ©). This way,
slower workers catch up with faster ones.

pBMW splits posting list segments into blocks, and uses
block-level statistics to prune the search [17]. We experi-
mented with multiple block sizes and selected 64, which
yielded the best performance. The approximate version’s
pruning aggressiveness is controlled by a parameter f > 1,
which multiplies O to relax the threshold for score upper
bounds [14]. For f = 1, the algorithm is exact.

PpJASS Our implementation of pJASS follows the descrip-
tion in [28]. It traverses all posting lists in parallel, in score
order, and accumulates the encountered scores per-document
in docMap. Each document is protected by a lock, and a
thread that encounters a document locks it, adds the partial
score from the term it traversed, and then unlocks it. The
algorithm stops after scanning a predefined fraction, p, of
postings. In the exact version, p = 1.

5.2.2 Parallel TA variants

SNRA sNRA is a shared-nothing parallelization of NRA,
where the index is partitioned to 12 shards by document id.
Each thread finds the top-k documents in its shard by running
NRA independently with thread-local data structures. When
all threads complete, their lists are merged and the global
top-k documents are kept.

PNRA pNRA is a naive shared-state parallelization of NRA
that does not employ Sparta’s optimizations. Namely, it uses a
shared document map, which it does not clean, and it updates
the term upper bounds upon every document evaluation. As
in Sparta, a dedicated task checks the stopping condition.
(Distributed stopping detection yielded worse results).

PRA Our implementation of pRA maintains its results in a
shared heap (experiments did not show any benefit to using lo-
cal heaps). Note that the algorithm’s multiple worker threads
may encounter postings of the same document independently,
and consequently score that document and try to insert it into

PPoPP 20, February 22—26, 2020, San Diego, CA, USA

Sparta pNRA sNRA pRA pBMW pJASS
CW 860 13291 5553 480 750 54 343
CWX10 | 12010 N/A 56223 7410 10210 N/A

Table 2. Average query latency (in ms) of 12-term queries
with exact algorithms using 12 threads. N/A indicates the
algorithm crashed due to lack of memory. None of the algo-
rithms meets real-time SLAs.

the heap multiple times. The implementation allows only the
first to take effect.

Since RA’s stopping detection is lightweight, we do not
dedicate a task to it. Instead, all workers check the UBStop
condition, monitor the time elapsed since the last heap update
and notify each other if they decide to stop.

5.3 Results

Although our focus is on approximate top-k, we experiment
first with the exact variants of the algorithms. For an algo-
rithm A, we denote its exact variant A-exact. We then con-
sider approximate variants with high and low recall, denoted
A-high and A-low, respectively. Note that the approximate
algorithms’ parameters (A, f, and p) affect the recall but do
not control it directly; our high recall instances are ones that
empirically achieve a recall of 96% or higher.

5.3.1 Exact Algorithms

Our first experiment looks into the feasibility of using exact
algorithms. Usability studies (e.g., [9]) show that users are
extremely sensitive to end-to-end delays beyond 500 ms, and
any excess delay beyond 250 ms leads to material degradation
in their experience. Therefore, a typical SLA (service-level
agreement) for a top-k service requires queries to be served
within 250 ms on average.

Our experiment shows that none of the exact algorithms
meets a real-time SLA for long queries. Table 2 depicts the
mean processing latencies of 12-term queries with 12 worker
threads (i.e., a single query fully exploits the multi-core CPU).
While on ClueWeb some algorithms complete within less than
a second, on ClueWebX10, some algorithms crash, and others
take between 7 seconds and nearly a minute, which is clearly
unacceptable.

We revisit the algorithms’ execution dynamics — namely,
how fast they accrue their results — as we study approximate
algorithms in the sequel.

5.3.2 Approximate Algorithms

With exact algorithms failing to match real-time requirements,
we turn to focus on the approximate instances. We param-
eterize Sparta, pRA, pNRA, and sNRA with A = 10 ms.
This yields high recall in all four algorithms. We instantiate
pBMW with f = 5 for high recall and f = 10 for low recall.
Finally, pJASS is instantiated with p = 0.005 for low recall

PPoPP 20, February 22—26, 2020, San Diego, CA, USA

and p = 0.02 for high recall (using p = 0.1, as suggested,
e.g., in [16], produced unacceptably high latencies). The re-
call achieved with these parameters for 12-term queries is
summarized in Table 3.

Latency. Figures 3a— 3d depict the scaling of single-query
latency with query length. The number of workers in each
test is equal to the number of terms (for Sparta, pRA, and
pNRA, this allows maximal parallelism). Figures 3a and 3b
present, respectively, the mean and 95% latencies of queries on
ClueWeb in the high-recall algorithms. The latter captures the
so-called “tail latency” of the slowest 5% of the queries. Sparta
outperforms all other algorithms in terms of both average
latency and the 95th percentile, on all query lengths. The
margin is noticeable for long queries.

Perhaps surprisingly, although we saw (in Table 2) that
pRA-exact outperforms Sparta-exact, the trend is reversed
in the approximate variants: pRA-high’s latency for 12-term
queries it is more than 2x slower than Sparta-high’s. This
means that Sparta spends much more work than pRA in or-
der to collect the remaining 2.5% of the exact result set. We
revisit this phenomenon below. While Sparta collects the ap-
proximate results quickly, the performance of pRA suffers
due to intensive access to the secondary index that cannot be
sustained even with modern SSD hardware.

Figure 3c depicts the mean latency for ClueWebX10 in all
algorithms. Sparta’s average latency scales perfectly, remain-
ing below 180 ms for all query lengths for both ClueWeb and
ClueWebX10. In other words, Sparta’s result set solidifies
after processing a similar number of postings, even when the
overall index size grows 10x. Its 95% latency is below 500 ms.
None of the other algorithms scales as well to the big dataset.

Figures 3d and 3e compare Sparta-high against the low-
recall variants of state-of-the-art web algorithms. By sacri-
ficing recall, pPBMW and pJASS do improve performance
and bring their tail latencies for short queries below Sparta’s.
Note that this is in line with the use case for which they were
developed — predictable performance on short queries. Yet
neither algorithm is able to meet Sparta’s average latency for
any query length or its tail latency for long queries. Moreover,
neither algorithm fairs well on the large data set. For exam-
ple, pPBMW-high processes 12-term queries within 630 ms on
average on ClueWeb, and within as long as 9.9 seconds on
ClueWebX10. pBMW-low, which sacrifices 20% of the recall
for performance, only improves this latency by 15%.

On ClueWeb, the shared-nothing and unoptimized paral-
lelizations of NRA are weaker than all other alternatives:
pNRA’s average latency for 12-term queries is 1 second,
and sNRA’s is 1.7 seconds. On the larger dataset, pPNRA
and sNRA are still poorer than Sparta but perform better
than pPBMW. This is thanks to the high scalability and early-
stopping nature of the approximate NRA approach. These
results emphasize the necessity of sharing information among
threads (unlike SNRA) on the one hand, and the importance of

Sheffi, et al.

Sparta’s locality optimizations, (which are missing in pNRA),
on the other. Specifically, the background cleaning and local
copies of docMap and the lazy updates of UB allow Sparta
to benefit from local access to data that resides in hardware
caches. We omit pNRA and sNRA from further discussion.

Recall dynamics. In order to understand how the top-k re-
sults get accrued by the different algorithms, we zoom in
on the dynamics of query recall over the running time. We
focus on 12-term queries in a 12-worker configuration. The
results are presented in Figures 3f and 3g for the ClueWeb
and ClueWebX10 datasets, respectively. Because the approx-
imate versions of Sparta, pRA, and pJASS are identical to
the respective exact versions until they stop, we show the
dynamics of the exact versions only. The same is not true
for pPBMW, where f impacts the algorithm’s results from the
outset. Hence, we plot all three instances of pPBMW.

We see that Sparta’s recall growth is the fastest. For in-
stance, it surpasses 80% recall in less than 50 ms, and 90%
recall in less than 100. But over time, its returns diminish, and
most of the work becomes unproductive. Whereas pRA takes
much longer to converge because it needs to fully score each
encountered document, its concluding phase is faster because
most relevant documents have complete scores. pPBMW scans
the postings in the order of document ids, which is unrelated
to document scores and hence accumulates the true hits at a
near-linear rate. Obviously, the convergence rate of pBMW-
high and pBMW-low is faster than that of pPBMW-exact. The
first two accrue results at similar rates until pPBMW-low stops
at approximately 80% recall. pJASS’s behavior is similar to
Sparta’s, but it is a bit slower and fails to reach 100% recall
within a minute of execution.

Parallelism. We next study latency scaling with intra-query
parallelism. We consider 12-term queries with a number of
threads varying from 1 to 12. The average latencies appear
in Figure 3h (for ClueWeb) and Figure 3i (for ClueWebX10).
The left-most data point in each curve corresponds to the
performance of the respective sequential algorithm.

Sparta requires some level of parallelism in order to achieve
real-time speed — its sequential latency is 840 ms, which is
above typical SLA requirements. Most of the gain is achieved
at low-parallelism levels (2 threads suffice). The same is
true for pJASS, which hardly improves when afforded more
threads, due to unequal thread workloads. On the other hand,
for pPBMW, much higher parallelism is essential — its latency is
inversely proportional to the number of threads. Thus, Sparta
is not only faster than pPBMW but also requires fewer re-
sources, which benefits throughput as we next show.

Throughput. Finally, we compare the throughput (in queries
per second) provided by the different algorithms. First, we
evaluate throughput on fixed query lengths. Figure 4 shows
the throughput achieved for each query length. Next, we
generate a workload with the query size distribution reported

Scalable Top-K Retrieval with Sparta PPoPP °20, February 22—-26, 2020, San Diego, CA, USA

‘ Sparta-high pRA-high pNRA-high sNRA-high pBMW-high pBMW-low pJASS-high pJASS-low
ClueWeb 97.5% 98.5% 98.5% 99% 97.5% 80% 96% 93%
ClueWebX10 99% 99% 99% 99% 97% 79.9% N/A 99%

Table 3. Recall of approximate algorithms for 12-term queries.

2000 i
—@— Sparta - high 3000] ~® Sparta-high 5000 —

1750 pBMW - high PBMW - high PNRA - high

1500 PRA - high 2500 PRA - high 4000] ~H— PJASS - low
—_ . — - hi BMW - low
0 =®— pNRA - high m =@®— pNRA - high p

1250 ; —)
3 PJASS - high £ 2000 PJASS - high 2 3000 PRA - high
1000 NRA - high 9 SNRA - high = —@— Sparta - high
g ? 9 € 1500 > .
£ 750 3 g g SNRA - high
© o [9]
= 1000 , 4 & 2000

500 C
500 1000
250 o T = ——
-~ .—
0 V- — > 0 > - o
0 2 a 6 8 10 12 0 2 2 6 8 10 12 oL u—a—e—e—0—000—0—
terms terms 0 2 4 6 8 10 12

terms

(c) Average latency, ClueWebX10

(a) Average latency, ClueWeb, high recall al- (b) 95% latency, ClueWeb, high recall algo-

gorithms rithms
600 1200
—®— Sparta - high —®— Sparta - high 100
500 pJASS - low 1000 pJASS - low
—@— pBMW - low -@— pBMW - low 80
3 400 % 800
E E 3 6
9
§300 Q 600 = —@— Sparta - exact
% % § 0 pBMW - exact
&200 £ 400 = ~¥— pJASS - exact
=- pRA - exact
100 200 20 PBMW - high
0 - o) ~@- pBMW - low
0 2 4 6 8 10 12 0 2 4 6 8 10 12 0
terms terms 0 200 400 600 800 1000
running time (ms)
d) Average latency, ClueWeb, Sparta vs. low (e) 95%, ClueWeb — Sparta vs. low recall algo- .
@ & . Y p (_) ’ P & (f) Recall dynamics, ClueWeb
recall algorithms rithms
100 - 60000
3500 —@— Sparta - high
pJASS - high 50000
80 3000 PRA - high
3 60 gzsoo PBMW - high 240000 e PBMW - high
= —@— Sparta - exact >2000 g PJASS - low
= 3 230000 A - Tioh
S a0 pBMW - exact S S PRA - hig !
= ~¥— pJASS - exact 51500 & 20000 ~&- Sparta - high
=~ pRA - exact 1000
20 PBMW - high 500 10000
—@— pBMW - low
o o ol 8t o o o o o oo 3@
0 2000 4000 6000 8000 10000 12000 0 2 4 6 8 10 12 0 2 4 6 8 10 12
running time (ms) parallelism (threads) parallelism (threads)
(g) Recall dynamics, ClueWebX10 (h) Average latency, ClueWeb, 12 terms (i) Average latency, ClueWebX10, 12 terms

Figure 3. Top-k (k = 1000) query latency. Plots (a)—(e) show scaling with the number of query terms; plots (f)—(g) show recall
dynamics with elapsed time for 12-term queries; plots (h)—(i) show scaling with intra-query parallelism.

in [20], where the average query length is 4.2 with a standard over its competitors, especially on the large dataset, where
deviation of 2.96. More than 5% of the queries have 10 or its throughput is 25x that of pPBMW-high. Its pronounced
more terms. The queries are generated as follows: we first advantage over pBMW is thanks to a combination of Sparta’s
sample a query length ¢ from the distribution in [20], and then speed and lower resource utilization.
select a query uniformly at random among all the length-£
queries in the complete set of 1200 AOL queries. 6 Related Work

Table 4 depicts the results of running this query mix on a Verbose queries challenge standard top-k processing tech-

shared worker pool of 12 threads. Here too, Sparta improves niques in terms of runtime latency. Huston and Croft [21]

PPoPP 20, February 22—26, 2020, San Diego, CA, USA

N
o

—A— pBMW - high
pBMW - low
PRA - high

—@— Sparta - high

queries/sec
= = N N w w
w o w o w o w

Figure 4. Top-k query throughput scaling with the number of
query terms, ClueWeb. The intra-query parallelism is equal
to the number of terms in all parallel algorithms.

| Sparta pRA pBMW pJASS
ClueWeb 125 109 595 10.8
ClueWebX10 | 9.6 1.8 0.38 N/A
Table 4. Average throughput (in queries per second) of the
approximate high recall algorithms on a query distribution
measured for voice queries in production.

evaluated several sequential query processing techniques for
verbose queries, concluding that the most effective one is to
simply reduce the length of the query by omitting stop-words
or “stop-structure” expressions. In this work we ignore the
query pre-processing phase and consider the query as a bag
of words given after textual analysis.

Crane et al. [16] showed that document-order algorithms
are susceptible to tail queries that may take orders of magni-
tude longer than the median query; approximate query evalu-
ation in WAND and BMW does not significantly reduce the
variance. Moreover, they showed that score-order algorithms
are less sensitive to tail queries due to their effective early
termination capability.

Mackenzie et al. [28] suggest pJASS— a parallel version
of the score-order algorithm JASS [25]. JASS’s virtue is its
simplicity — it performs very little processing per-posting. In
order to achieve early termination, JASS applies a heuristic
to limit the fraction of processed terms. Similarly to Sparta,
pJASS focuses on approximate top-k retrieval (its exact vari-
ant is inefficient). We show that Sparta achieves better per-
formance and better recall thanks to multiple optimizations —
e.g., continuous result-set pruning that leads to better locality,
fine-tuned termination, and careful synchronization. Sparta’s
additional advantage is its small RAM footprint, whereas
pJASS intentionally avoids pruning and maintains a huge
in-memory document map throughout the query evaluation.

Some previous works, e.g., [27, 34], studied parallel com-
putation of conjunctive queries via posting list intersection.
Note that this problem is different from (and easier than) the

Sheffi, et al.

problem considered in this paper, where a top-scored docu-
ment does not necessarily include all query terms.

Other works [12, 31] have parallelized state-of-the-art se-
quential algorithms like WAND and BMW by sharding the
document space, computing the top-k in each shard indepen-
dently, and finally merging the results. Implementations differ
in whether threads share a common heap and threshold ©
or not. A global threshold is tighter than the threads’ local
thresholds, hence less work is done by each of the threads as
more documents can be safely skipped. On the other hand,
additional overhead is induced by the synchronization (e.g.,
using locks) needed to guarantee exclusive updates of the
shared heap. Experimental results [31] have shown the superi-
ority of the local-heap approach. The pPBMW implementation
used in our experiments follows this approach, but period-
ically shares the ® values among the threads for improved
performance.

Jeon et al. [24] presented an adaptive resource management
algorithm that chooses the degree of parallelism at runtime for
each query, based on predicting high-latency queries. Such
efforts are orthogonal to the performance improvement we
achieve via parallelization of (long) queries.

Other works [8, 27] have explored using GPU hardware
for information retrieval; [27] focused on adaptively choosing
whether to use a CPU or a GPU based on the query’s difficulty,
and [8] focused on optimizing throughput rather than latency.
In contrast, our work leverages standard server-grade multi-
threaded CPUs.

The Threshold Algorithm and its variants [7, 18] have been
extensively studied by the database community, and have been
applied in many relational database systems (for a comprehen-
sive survey see [23]). Mamoulis et al. [29] observed two main
phases during NRA processing — the “growing phase”, where
the candidate list grows, and the “shrinking phase” where
no new documents can end up in the top-k results, after the
first stopping condition is met. They used different data struc-
tures for the two phases in order to minimize the number of
accesses and the memory requirements. Gursky et al. [19]
also noticed the bottleneck in NRA computation derived from
NRA’s needs to maintain an extremely large number of par-
tially scored candidates. They proposed several optimization
methods for candidate list maintenance to speed up the search.
One of their suggested approaches is to periodically remove
irrelevant candidates from the candidate list, which we also
do in Sparta.

Yuan et al. [39] observed that the number of accesses to the
sorted lists by NRA could be further reduced by selectively
performing the sorted accesses to the different lists (instead of
in parallel). They proposed a selection policy that prioritizes
the accesses to the sorted lists and cuts down unnecessary
accesses. They showed significant cutoff in the number of
accesses with respect to the original NRA. However, as the
authors pointed out, the effectiveness of this approach in terms
of run-time latency still has to be explored.

Scalable Top-K Retrieval with Sparta

In the IR setting, a few works [11, 35, 36] have experi-
mented with TA on web data using standard IR metrics. Bast
et al. [11] optimized the TA scheduling method based on a
cost model for sequential and random accesses. Theobald
et al. [35] extended TA for XML query languages. Another
work by Theobald et al. [36] introduced an approximate TA
algorithm based on probabilistic arguments: When scanning
the posting lists in descending order of local scores, various
forms of derived bounds are employed to predict when it
is safe, with high probability, to skip candidate items hence
trading off accuracy for sorted access. Applying similar prob-
abilistic pruning rules for Sparta may prove beneficial and is
left for future work.

7 Conclusions

We presented Sparta, a practical algorithm for approximate
top-k retrieval on multi-core hardware. Sparta can support
modern analytics and search experiences, which induce long
queries, within real-time requirements. To our knowledge,
Sparta is the first algorithm capable of serving long queries
(10 or more terms) on server-grade hardware within interac-
tive latency bounds.

Sparta leverages the efficiency and early-stopping proper-
ties of the seminal Threshold Algorithm. It forgoes the need
for random access and duplicate indexes by relying on TA’s
NRA variant. It achieves high performance by optimizing
memory footprints, memory access patterns, inter-thread data
sharing, and synchronization.

Sparta scales perfectly with dataset size. In a web search
use case, Sparta yields average latencies of 180 ms on stan-
dard hardware for queries of up to 12 terms, when applied to
datasets of both 50M and 500M documents. It does so while
producing a highly accurate approximation of the exact results
(a recall of above 97.5%). For comparison, its state-of-the-art
parallel competitors, pPBMW and pJASS, require 640 ms and
above 1 second, respectively, to provide similar accuracy on
the 50M document dataset; on the larger dataset, pPBMW’s
latency soars to almost 10 seconds, while pJASS crashes.

References

[1] [n. d.]. https://docs.oracle.com/javase/7/docs/api/java/util/
concurrent/ConcurrentHashMap.html.

[2] [n. d.]. https://docs.oracle.com/javase/7/docs/api/java/nio/
MappedByteBuffer.html.

[3] [n. d.]. https:/lucene.apache.org.

[4] [n. d.]. http://www.cim.mcgill.ca/~dudek/206/Logs/
AOL-user-ct-collection.

[5] [n.d.]. Flurry. https://www.flurry.com/.

[6] [n.d.]. TopN queries. http://druid.io/docs/latest/querying/topnquery.
html.

[7] Reza Akbarinia, Esther Pacitti, and Patrick Valduriez. 2007. Best

Position Algorithms for Top-k Queries. In Proceedings of VLDB. VLDB

Endowment, 495-506. http://dl.acm.org/citation.cfm?id=1325851.

1325909

Naiyong Ao, Fan Zhang, Di Wu, Douglas S. Stones, Gang Wang,

Xiaoguang Liu, Jing Liu, and Sheng Lin. 2011. Efficient Parallel

—
x

PPoPP 20, February 22—26, 2020, San Diego, CA, USA

Lists Intersection and Index Compression Algorithms Using Graphics
Processing Units. Proc. VLDB Endow. 4, 8 (May 2011), 470-481.
https://doi.org/10.14778/2002974.2002975

Ioannis Arapakis, Xiao Bai, and B. Barla Cambazoglu. 2014. Impact

of Response Latency on User Behavior in Web Search. In Proceedings

of SIGIR. ACM, 103-112.

[10] Ricardo A. Baeza-Yates and Berthier Ribeiro-Neto. 1999. Modern
Information Retrieval. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA.

[11] Holger Bast, Debapriyo Majumdar, Ralf Schenkel, Martin Theobald,
and Gerhard Weikum. 2006. 10-Top-k: Index-access Optimized Top-
k Query Processing. In Proceedings of VLDB. VLDB Endowment,
475-486.

[12] Carolina Bonacic, Carlos Garcia, Mauricio Marin, Manuel Prieto-
Matias, and Francisco Tirado. 2010. Building Efficient Multi-threaded
Search Nodes. In Proceedings of CIKM. ACM, 1249-1258.

[13] Edward Bortnikov, David Carmel, and Guy Golan-Gueta. 2017. Top-k
Query Processing with Conditional Skips. In Proceedings of WWW
Companion. 653-661.

[14] Andrei Z. Broder, David Carmel, Michael Herscovici, Aya Soffer, and
Jason Zien. 2003. Efficient Query Evaluation Using a Two-level Re-
trieval Process. In Proceedings of CIKM. ACM, 426—434.

[15] Jamie Callan, Mark Hoy, Changkuk Yoo, and Le Zhao. 2009.
Clueweb(9 data set.

[16] Matt Crane, J. Shane Culpepper, Jimmy Lin, Joel Mackenzie, and
Andrew Trotman. 2017. A Comparison of Document-at-a-Time and
Score-at-a-Time Query Evaluation. In Proceedings of the Tenth ACM
International Conference on Web Search and Data Mining (WSDM
’17). ACM, New York, NY, USA, 201-210. https://doi.org/10.1145/
3018661.3018726

[17] Shuai Ding and Torsten Suel. 2011. Faster Top-k Document Retrieval
Using Block-max Indexes. In Proceedings of SIGIR. ACM, 993-1002.

[18] Ronald Fagin, Amnon Lotem, and Moni Naor. 2003. Optimal aggre-
gation algorithms for middleware. Journal of computer and system
sciences 66, 4 (2003), 614-656.

[19] Peter Gursky and Peter Vojtas. 2008. Speeding Up the NRA Algo-
rithm. In Proceedings of the 2Nd International Conference on Scal-
able Uncertainty Management (SUM '08). Springer-Verlag, 243-255.
https://doi.org/10.1007/978-3-540-87993-0_20

[20] Ido Guy. 2016. Searching by Talking: Analysis of Voice Queries on
Mobile Web Search. In Proceedings of SIGIR. ACM, 35-44.

[21] Samuel Huston and W. Bruce Croft. 2010. Evaluating Verbose Query
Processing Techniques. In Proceedings of SIGIR °10. ACM, 291-298.
https://doi.org/10.1145/1835449.1835499

[22] Thab F. Ilyas, George Beskales, and Mohamed A. Soliman. 2008. A
survey of top-k query processing techniques in relational database
systems. ACM Comput. Surv. 40, 4 (2008), 11:1-11:58. https://doi.
org/10.1145/1391729.1391730

[23] Thab F Ilyas, George Beskales, and Mohamed A Soliman. 2008. A
survey of top-k query processing techniques in relational database
systems. ACM Computing Surveys (CSUR) 40, 4 (2008), 11.

[24] Myeongjae Jeon, Sachoon Kim, Seung-won Hwang, Yuxiong He,
Sameh Elnikety, Alan L. Cox, and Scott Rixner. 2014. Predictive Par-
allelization: Taming Tail Latencies in Web Search. In Proceedings of
SIGIR. ACM, 253-262. https://doi.org/10.1145/2600428.2609572

[25] Jimmy Lin and Andrew Trotman. 2015. Anytime Ranking for Impact-
Ordered Indexes. In Proceedings ICTIR. ACM, 301-304.

[26] Jimmy Lin and Andrew Trotman. 2017. The Role of Index Compression
in Score-at-a-time Query Evaluation. Inf. Retr. 20, 3 (June 2017), 199—
220. https://doi.org/10.1007/s10791-016-9291-5

[27] Yang Liu, Jianguo Wang, and Steven Swanson. 2018. Griffin: Uniting
CPU and GPU in Information Retrieval Systems for Intra-query Par-
allelism. In Proceedings of the 23rd ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (PPoPP ’18). ACM,

[9

—

https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/ConcurrentHashMap.html
https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/ConcurrentHashMap.html
https://docs.oracle.com/javase/7/docs/api/java/nio/MappedByteBuffer.html
https://docs.oracle.com/javase/7/docs/api/java/nio/MappedByteBuffer.html
https://lucene.apache.org
http://www.cim.mcgill.ca/~dudek/206/Logs/AOL-user-ct-collection
http://www.cim.mcgill.ca/~dudek/206/Logs/AOL-user-ct-collection
https://www.flurry.com/
http://druid.io/docs/latest/querying/topnquery.html
http://druid.io/docs/latest/querying/topnquery.html
http://dl.acm.org/citation.cfm?id=1325851.1325909
http://dl.acm.org/citation.cfm?id=1325851.1325909
https://doi.org/10.14778/2002974.2002975
https://doi.org/10.1145/3018661.3018726
https://doi.org/10.1145/3018661.3018726
https://doi.org/10.1007/978-3-540-87993-0_20
https://doi.org/10.1145/1835449.1835499
https://doi.org/10.1145/1391729.1391730
https://doi.org/10.1145/1391729.1391730
https://doi.org/10.1145/2600428.2609572
https://doi.org/10.1007/s10791-016-9291-5

PPoPP 20, February 22—26, 2020, San Diego, CA, USA

(28]

[29]

[30]

[31]

(32]

[33]

New York, NY, USA, 327-337. https://doi.org/10.1145/3178487.
3178512

Joel Mackenzie, Falk Scholer, and J. Shane Culpepper. 2017. Early
Termination Heuristics for Score-at-a-Time Index Traversal. In Pro-
ceedings of the 22Nd Australasian Document Computing Sympo-
sium (ADCS 2017). ACM, New York, NY, USA, Article 8, 8 pages.
https://doi.org/10.1145/3166072.3166073

Nikos Mamoulis, Man Lung Yiu, Kit Hung Cheng, and David W.
Cheung. 2007. Efficient Top-k Aggregation of Ranked Inputs. ACM
Trans. Database Syst. 32, 3, Article 19 (Aug. 2007). https://doi.org/
10.1145/1272743.1272749

Oscar Rojas, Veronica Gil-Costa, and Mauricio Marin. 2013. Distribut-
ing efficiently the Block-Max WAND algorithm. Procedia Computer
Science 18 (2013), 120-129.

Oscar Rojas, Veronica Gil-Costa, and Mauricio Marin. 2013. Efficient
parallel block-max WAND algorithm. In European Conference on
Farallel Processing. Springer, 394-405.

Amanda Spink, Dietmar Wolfram, Major B. J. Jansen, and Tefko Sarace-
vic. 2001. Searching the Web: The Public and Their Queries. J. Am.
Soc. Inf. Sci. Technol. 52, 3 (Feb. 2001), 226-234.

Trevor Strohman, Howard Turtle, and W. Bruce Croft. 2005. Optimiza-
tion Strategies for Complex Queries. In Proceedings of SIGIR. ACM,

[34]

[35]

[36]

[37]

[38]

(39]

Sheffi, et al.

219-225.

Shirish Tatikonda, B. Barla Cambazoglu, and Flavio P. Junqueira. 2011.
Posting List Intersection on Multicore Architectures. In Proceedings of
SIGIR. ACM, 963-972.

Martin Theobald, Holger Bast, Debapriyo Majumdar, Ralf Schenkel,
and Gerhard Weikum. 2008. TopX: Efficient and Versatile Top-k Query
Processing for Semistructured Data. The VLDB Journal 17, 1 (Jan.
2008), 81-115. https://doi.org/10.1007/s00778-007-0072-z
Martin Theobald, Gerhard Weikum, and Ralf Schenkel. 2004. Top-k
Query Evaluation with Probabilistic Guarantees. In Proceedings of
VLDB (VLDB '04). VLDB Endowment, 648-659. http://dl.acm.org/
citation.cfm?id=1316689.1316746

Howard Turtle and James Flood. 1995. Query Evaluation: Strategies
and Optimizations. Inf. Process. Manage. 31, 6 (Nov. 1995), 831-850.
Lidan Wang, Jimmy Lin, and Donald Metzler. 2011. A Cascade Rank-
ing Model for Efficient Ranked Retrieval. In Proceedings of SIGIR.
ACM, 105-114.

Jing Yuan, Guangzhong Sun, Tao Luo, Defu Lian, and Guoliang Chen.
2012. Efficient processing of top-k queries: selective NRA algorithms.
Journal of Intelligent Information Systems 39, 3 (2012), 687-710.

https://doi.org/10.1145/3178487.3178512
https://doi.org/10.1145/3178487.3178512
https://doi.org/10.1145/3166072.3166073
https://doi.org/10.1145/1272743.1272749
https://doi.org/10.1145/1272743.1272749
https://doi.org/10.1007/s00778-007-0072-z
http://dl.acm.org/citation.cfm?id=1316689.1316746
http://dl.acm.org/citation.cfm?id=1316689.1316746

	Abstract
	1 Introduction
	2 Problem Statement: Top-k Retrieval
	3 Background
	3.1 State-of-the-art Web Search Algorithms
	3.2 The Threshold Algorithm

	4 Sparta
	4.1 Sparta Data Structures
	4.2 Splitting the Work
	4.3 Synchronization
	4.4 Analysis

	5 Case Study: Web Search
	5.1 Methodology
	5.2 Implementation
	5.3 Results

	6 Related Work
	7 Conclusions
	References

