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ABSTRACT
Predicting the traffic of an article, as measured by page
views, is of great importance to content providers. Articles
with increased traffic can improve advertising revenue and
expand a provider’s user base. We propose a broadly appli-
cable methodology incorporating meta-data and joint fore-
casting across articles, that involves solving a large optimiza-
tion problem through the Alternating Directions Method
of Multipliers (ADMM). We implement our solution using
Spark, and evaluate it over a large corpus of articles and fore-
casting models. Our results demonstrate that our feature-
based forecasting is both scalable as well as highly accurate,
significantly improving forecasting predictions compared to
traditional forecasting models.

1. INTRODUCTION
Predicting the traffic of an article, as measured by page

views, is of great importance to content providers. Articles
with increased traffic can improve advertising revenue and
expand a provider’s user base. Traffic provenance is also im-
portant: user referrals from social media or search engines
may indicate that an article is going viral. Predicting future
traffic from such sources can therefore aid in identifying vi-
ral articles. This, in turn, can aid decisions regarding, e.g.,
which articles a provider should promote on its home page,
on its official Twitter account, or through display and search
ads. To that end, this paper aims at devising a methodology
for forecasting traffic, categorized by provenance. In partic-
ular, we wish to predict the traffic an article will receive
from social media and search, as both indicate the public’s
interest in an article.

The above forecasting objective poses several challenges.
First, although a provider may only be interested in, e.g.,
social traffic, the dimensions of the time series are highly cor-
related. For example, an increase in social traffic may lead
to an increase in search traffic and vice-versa. This is some-
thing that we should try to exploit during forecasting; hence,
a multi-dimensional forecasting approach is necessary.

Second, traditional forecasting techniques like, e.g., auto-
regressive models [3], involve basing forecasts only on past
time series data: under such techniques, future traffic is pre-
dicted using past traffic spanning, e.g., the past few hours.
Such forecasting methods are clearly at a disadvantage when
an article is young, and there is little traffic evidence to be
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used to forecast its future behavior. This is very impor-
tant in our case, as the first few hours of an article’s life
are the most crucial: due to the “24-hour news cycle” phe-
nomenon, most articles are either picked up early on or not
at all, and very few receive significant traffic after 36 hours
following their appearance. In contrast to traditional fore-
casting in domains such as finance or weather, where the
preponderance of historical data can be taken for granted,
our forecasting techniques are most needed precisely when
the article is nascent, and has recently been released.

Third, forecasting each article’s traffic individually is ill-
advised in the context of our problem because it ignores
topicality. Observing, for example, that an article about
an artist or a world event is gaining traction in the social
media can be used in forecasting the traffic of an article with
the same topic. In short, a feature-based approach utilizing
article similarity seems appropriate.

To address the above issues, we propose a forecasting
methodology built on both traffic traces and article features.
The latter indeed allows us to implement a feature-based
approach to traffic forecasting: we acheive this by regress-
ing the parameters of traditional forecasting models over an
article’s features. In particular, we make the following con-
tributions:

• We propose a broadly applicable methodology incorpo-
rating features and joint forecasting across articles. In
short, our methodology can extend any forecasting method
that can be expressed as a parametrized multi-dimensional
time series fitting problem, to jointly training across mul-
tiple articles.
• Training jointly across thousands of articles, each asso-

ciated with meta-data comprising thousands of features,
amounts to a large optimization problem. We show that
this problem can be solved through the Alternating Di-
rections Method of Multipliers (ADMM), recently advo-
cated as an exemplary method for parallel learning [5].
Our solution is highly parallelizable, and scales to thou-
sands of machines, articles, and features.
• We implement our solution in a fully parallel manner us-

ing Spark [28]. Our implementation is highly modular
and extensible: a programmer wishing to incorporate a
new forecasting model needs to only implement a penal-
ized fitting function on a single article traffic trace: our
framework immediately scales this code to jointly train-
ing among multiple articles and machines using Spark.
• We extensively evaluate our method over a variety of



different forecasting models on a dataset comprising 2K
articles spanning 16K features. Our results indicate that,
when predicting peak traffic, our methodology yields pre-
dictions between 5 and 100 times better than traditional
forecasting methods.

The measured quantities required to implement our fore-
casting method are readily available to content providers:
page views are routinely monitored and scraped from web-
server logs, and website content features are routinely ex-
tracted for advertisement purposes. In addition, traffic
provenance is logged by webservers through so-called refer-
ral events: the page containing the link a person clicked in
order to reach an article is routinely tracked.

The remainder of this paper is organized as follows. Re-
lated work is presented in Section 2, while we formally state
the problem we study in Section 3. A parallel solution
through ADMM is presented in Section 4. The set of tradi-
tional forecasting models we incorporate in our framework
are introduced in Section 5, and our implementation over
Spark is described in Section 6. Section 7 contains our ex-
periments, and we conclude in Section 8.

2. RELATED WORK
Broadly speaking, time series forecasting techniques can

be grouped into traditional machine learning approaches,
such as support vector machines [23, 9] and neural net-
works [4, 22], specifically applied to time series forecasting,
as well as approaches tailored to time series, like autore-
gressive models [3, 12]. Although all these models are very
different in terms of their underlying assumptions, parame-
ter estimation from trace data is often formulated as an op-
timization problem, e.g., through the minimization of sum
of squared errors or through maximum likelihood estima-
tion. As such, the training phase for many of these models
can be incorporated into our proposed ADMM-based frame-
work: we illustrate this in our work (c.f. Section 5), showing
how several traditional models can be extended to leverage
metadata by solving, in parallel, an optimization problem.

A series of recent papers have focused on modeling pop-
ularity in social media. Focusing on mentions of “memes”
(short phrases and hashtags), Yang et al. [25] identify 6
canonical shapes that characterize most time series of memes
in Twitter, while Chang et al. [10] propose a clustering
method aimed at identifying spikes. Matsubara et al. [20]
propose a parametrized time series model that spans the 6
canonical patterns detected by [25], and fits actual meme
time series quite well. All of the above works observe diur-
nal patterns, as well as the growth and eventual decay of a
meme, which is also observed in other online content [14].
Article consumption is subject to very similar patterns; we
exploit this by incorporating variants of the above models
in our forecasting experiments.

Though its formal guarantees have been known since the
early 70’s, ADMM [5] has only recently received consid-
erable attention due to its ability to scale problems over
parallel architectures. In the past few years, it has been
applied with great success to a variety of large-scale prob-
lems, including matrix factorization [27], multi-dimensional
anisotropic total variation problems [26], rank-SVM train-
ing [11], as well as click prediction [2]. Implementations on
Hadoop [1] and Spark [16] have also been recently publicly
released. Our work departs by focusing on a time series

forecasting, but also on producing a nested implementation
through Spark that is highly modular supporting a variety
of different models, as discussed in Section 6, whereas prior
implementations focused on a single learning task (e.g., lo-
gistic regression). In addition, our implementation has a
distributed consensus step, whereas other implementations
(e.g., [16], implemented in Scala) collect and broadcast all
consensus variables from a single processor; this does not
scale with the number of variables. Compared to Hadoop-
based approaches such as [1], Spark resilience ensures that
relevant data structures stay in memory, and are not read
repeatedly from disk at every step of ADMM, leading to
improved performance. We have open-sourced our ADMM
implementation,1 written in Python over Spark.

It should be noted that there are other approaches to
distributed optimization than our Spark-ADMM method-
ology. In terms of the algorithm, Stochastic Gradient De-
scent (SGD) [29] and Proximal Gradient Method (PGM)
[21] are two alternatives to ADMM that can be used for
distributed optimization. In these methods, each processor
locally performs a tiny gradient computation. In contrast,
in ADMM, each processor solves a local optimization prob-
lem over a subset of the data. This is a computationally
intensive task, that leads to a greater advance towards the
optimal solution per iteration. In turn, this decreases the
number of iterations, as well as the communication traffic
among processors.

In terms of the platform, Hadoop as well as the different
flavors of parameter servers [18, 24, 13, 17] are some com-
mon alternatives to Spark. Compared to Hadoop, Spark
has lower overhead as data is cached in memory, and has
built-in fault-tolerance, recovering computation from failed
processors automatically. It is also a far easier program-
ming framework to work with, as it seamlessly integrates
with high-level languages like Python and Scala. Parame-
ter servers support asynchronous consistency models [24]
in contrast to the synchronous Spark framework described
here. While asynchrony can boost parallelism, it is specifi-
cally effective for algorithms like SGD and PGM where the
task units and therefore the parameter updates are small
and frequent; this is not the case for ADMM, in which up-
dates are computed through bulk tasks. In addition, though
synchronous, ADMM provides asymptotic convergence rate
guarantees with fewer assumptions.

3. PROBLEM STATEMENT
In this section, we give a formal description of the problem

we address, namely, joint traffic forecasting among a collec-
tion of articles. We begin by describing the traffic traces
typically at the disposal of a provider, and briefly review
how such data alone can be used for forecasting purposes.
Finally, we describe the approach we take to enhance this
prediction process using article features.

3.1 Trace Description
For our purposes, a traffic trace is a multi-dimensional

time series. Each point in this time series captures the traf-
fic received by an article within a specific timeslot. The
dimensions of the traffic indicate the different types of traf-
fic that an article receives. In our case, we categorize traffic
by referral type; that is, we consider:

1http://github.com/yahoo/SparkADMM

http://github.com/yahoo/SparkADMM
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Figure 1: Example of an article’s traffic trace. Labels are as follows: “internal” indicates a referral to this
article from the same domain, “social”captures referrals from social media like Twitter and Facebook, “search”
indicates traffic from a search engines, and remaining traffic is labeled as “other”.

• “Internal” traffic; this time series measures the number
of article views at a given timeslot by users previously
visiting another article within the same domain.
• “Social” traffic; this time series measures the number of

article views by users previously visiting social media like
Twitter, Facebook, LinkedIn, Weibo, etc.
• “Search” traffic; this time series measures the number of

article views by users that reach the article by clicking
at a link provided by a search engine, like Google, Bing,
Yahoo search, Baidu, etc.

We focus on the above categories, though other traffic cat-
egorizations, e.g., by viewer device, are also possible. Both
our analysis, as well our code, are agnostic to the cate-
gories used. An example of an anonymized traffic trace can
be found in Figure 1. Most articles exhibit this “gamma
distribution”-like shape: traffic peaks within a few hours,
and then dies out.

We assume that each article is monitored from the time
it is published for at a total of T timeslots, the monitoring
duration. We denote by P the number of referral types (in
our case, P = 3), and by y(t) ∈ RP , for t = 1, . . . , T the
traffic of an article at timeslot t. We also denote by Yt =
{y(τ)}tτ=0 the trace history up to and including time t; as
such, the trace history YT contains the entire trace.

3.2 Forecasting Models
A parametrized forecasting model is a mapping f that

takes as input:

• the trace history up to time t, i.e., Yt−1 and
• a parameter vector β ∈ RD,

and outputs a prediction ŷ(t) of the traffic at time t. For-
mally, the prediction is given by

ŷ(t) = f(β;Yt−1),

where f : RD ×
⋃∞
τ=0[RP ]τ → RP . Clearly, such a model

predicts traffic at time t using the trace history up to t;
in can also predict traffic at time T + 1 (i.e., outside the
observed trace).

The parameters of the model can be trained by fitting pre-
dictions to the existing trace. E.g., they can be computed by
minimizing the square error of predictions to actual values:

F (β;YT ) ≡
∑T
t=1 ‖y(t)− f(β;Yt−1)‖22, (1)

where ‖ · ‖2 is the L2 norm. For the sake of illustration,
we give an example of such a parametrized model below;

Section 5 contains an exhaustive presentation of all models
we use.

Example: Linear Autoregressive Model.
In a linear autoregressive model [7], the traffic
at time t is expressed as a linear function of past
traffic, i.e., ŷ(t) = β0 +

∑τ0
τ=1 Bτy(t − τ). The

parameters of the model are the vector β0 ∈ RP
and the matrices Bτ ∈ RP×P , τ = 1, . . . , τ0. In-
tuitively, τ0 captures how far back in the past
one needs to go to make a prediction.

We note that, if the square error function F in (1) is con-
vex in β, there exist well-known techniques for finding the
optimal β that minimizes F (see, e.g., [6]). This is the case,
e.g., for the square error function resulting from the simple
autoregressive model described above.

3.3 Using Article Features
As discussed in the introduction, using a parametrized

prediction model has certain disadvantages. First, there
is a “cold-start” problem: there may be insufficient traf-
fic for an article that has just been published to train the
model and give meaningful predictions. Broadly speaking,
parametrized predictive models perform best when T is large
and the historical data suffice to train the parameters β. A
second disadvantage is that this type of forecasting treats
articles in isolation, and does not leverage article similari-
ties. For example, this approach does not exploit the fact
that all articles mentioning a certain artist or world event
seem to be generating considerable traffic.

A natural way to address these issues is to link model
parameters to article features. In particular, suppose that
we have a training dataset comprising N traffic traces YTi ,
i ∈ N ≡ {1, . . . , N}. Suppose also that each article i ∈ N
is associated with M features, describing its content. We
denote by xi ∈ RM the feature vector of article i. Typically,
although the number of features M may be large, each xi
has sparse support, i.e., for M≡ {1, . . . ,M},

| supp(xi)| = |{j ∈M : xij 6= 0}| �M for all i ∈ N . (2)

Our approach is to regress the parameters of the traffic
model from these features. In particular, we assume that
the parameters βi to be plugged in the fitting function (1)
are given by a linear transformation of these features, i.e.,

βi = Zxi, for all i ∈ N (3)



where Z ∈ RD×M is an unknown matrix to be trained from
the data. In particular, Z can be trained from the dataset
{YTi ,xi}Ni=1 by solving (1), subject to the set of linear con-
straints (3). However, in the presence of a large number
of features, it is natural to expect that matrix Z is sparse,
and only few features are relevant to forecasting. For this
reason, we incorporate feature selection by solving instead a
regularized minimization problem:

GlobalOptimization

min
Z∈RD×M

∑N
i=1 F (Zxi;YTi ) + λ‖Z‖1, (4)

where F as in (1), ‖Z‖1 is the sum of absolute values of the
elements of Z (the entry-wise L1 matrix norm), and λ > 0
is a regularization parameter. Note that, if F is convex in
β, the problem (4) remains convex, and can thus be solved
with standard techniques.

Our approach indeed addresses the two problems outlined
in the beginning of this section. First, the cold-start prob-
lem is addressed, as the parameters of a new article can be
estimated from Z and the features xi even in the absence
of any traffic, using (3). Second, Z is jointly trained across
multiple articles: indeed, articles that have similar features
are predicted to have similar behavior—this is again an im-
plication of (3). One can train Z infrequently, e.g., once or
twice a day: we discuss different ways of using a trained Z
to make frequent (e.g., hourly) predictions in Section 7.

4. A PARALLEL SOLUTION
Training models jointly across traces, by learning matrix

Z through (4), is quite appealing for the reasons we out-
lined above. However, it also raises a significant scalability
challenge. Even if the prediction model is linear, solving the
lasso regression (4) involves jointly minimizing an objective
comprising a total of N × T × P square terms, over D ×M
unknown variables. When the number of websites N and
the size of the traces span several days, this number can be
prohibitive. In fact, the entire data set of traces and features
may not even fit in memory.

This calls for parallelizing the solution of (4). We out-
line how this can be done using the Alternating Directions
Method of Multipliers (ADMM) [5]. We focus here on how
(4) can be solved in parallel through this approach, as well
as in formally describing both the architecture and the exe-
cution of each step of this iterative process.

4.1 Technical Preliminary
For completeness, we give a brief overview of ADMM; the

exposition below follows [5], which is an excellent reference
for both the method as well as its applications. ADMM
solves arbitrary convex optimization problems with a sepa-
rable objective and linear equality constraints, such as:

Minimize: g1(x) + g2(z) (5a)

subject to: Ax+Bz = c (5b)

for x ∈ Rd, z ∈ Rd
′
, A ∈ Rd

′′×d, B ∈ Rd
′′×d′ , c ∈ Rd

′′
, and

g1 : Rd → R, g2 : Rd
′
→ R convex functions. For ρ > 0,

consider the following augmented Lagrangian of (5)

Lρ(x,z, ξ) = g1(x) + g2(z) + ξ>(Ax+Bz − c)

+
ρ

2
‖Ax+Bz − c‖22,

(6)

where ξ ∈ Rd
′′

are the dual variables (i.e., Lagrange multipli-
ers) corresponding to the constraints (5b). Compared to the
standard Lagrangian, (6) contains an additional quadratic
term ρ

2
‖Ax+Bz − c‖22, which vanishes for x,z feasible.

ADMM solves (5) through dual ascent, iteratively mini-
mizing the augmented Lagrangian (6) as follows:

xk+1 = arg minx∈Rd Lρ(x,z
k, ξk) (7a)

zk+1 = arg minz∈Rd′ Lρ(x
k+1,z, ξk) (7b)

ξk+1 = ξk + ρ∇ξLρ(xk+1,zk+1, ξk) (7c)

where k ∈ N. This iterative procedure is guaranteed to con-
verge to a solution of (5) under mild conditions, namely, that
g1 and g2 are convex and that the augmented Lagrangian
has a saddle point [5]. Most importantly, when f and g
are separable, the iterations (7) are parallelizable. This is
precisely the property we exploit in this paper.

4.2 Solving GlobalOptimization through ADMM
We now discuss how ADMM can be used to parallelize

the solution of GlobalOptimization. We do so by casting
GlobalOptimization as a generalized consensus problem
(see Chapter 7 of [5]). For L ≡ {1, . . . , L}, let {I`}`∈L be
a partition of the set of articles N , i.e.,

⋃
`∈L I` = N , and

I` ∩ I`′ = ∅, for ` 6= `′. For M = {1, . . . ,M} the set of
features, consider the bipartite graph G(L,M, E), where

E = {(`, j) : j ∈
⋃
i∈I`

supp(xi)}, (8)

where supp(xi) the support of xi, as in (2). An example of
such a graph can be shown in Figure 2(a). Intuitively, the
partition {I`}`∈L splits the dataset of articles into L pieces.
The two sets of nodes of the bipartite graph G correspond
to partitions in L and features in M, respectively. An edge
between a partition node ` ∈ L and a feature node j ∈ M
exists if and only if ` “covers” j, i.e., there exists a feature
vector xi, i ∈ I`, whose j-th coordinate is non-zero. Note
that graph G is sparse when L = Θ(N), by the sparse sup-
port assumption (2), .

For each node ` ∈ L, we denote by

Γ(`) = {j ∈M : (`, j) ∈ E} (8)
=
⋃
i∈I`

supp(xi) (9)

the neighborhood of ` in G; we define Γ(j), j ∈ M, simi-

larly. For x ∈ RM and A ⊂ M we denote by [x]A ∈ R|A|
the projection of x to the coordinates spanned by A. Sim-
ilarly, for Z ∈ RD×M , we define [Z]·A ∈ RD×|A| to be the
corresponding projection of the columns of Z.

We then consider this equivalent formulation of (4):

Minimize:
∑
`∈L

∑
i∈I`

F (Z`[xi]Γ(`);YTi ) + λ‖Z‖1, (10a)

subject to: Z` = [Z]·Γ(`), ` = 1, . . . , L. (10b)

In this formulation, Z ∈ RD×M is a consensus value, while
Z` ∈ RD×|Γ(`)|, ` ∈ L, are auxiliary variables “local” to each
partition `; through (10b), they coincide with the columns
of the consensus value Z in Γ(`). Problem (10) is equivalent
to (4): to see this, observe that Z`[xi]Γ(`) = Zxi for any Z
such that Z` = [Z]·Γ(`) , by (9).

This is also a classic example of a problem that can be
solved through ADMM. Indeed, (10) is a special case of (5),
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Figure 2: Distributed Implementation of ADMM solving (4). Figure (a) illustrates the bipartite graph G
when articles are described by M binary features, indicating whether an article can be included in a certain
category (sports, news, etc.). Figures (b)-(d) describe the parallel ADMM algorithm. In (b), each partition
processor fits a local solution Z` to its data, penalized by a “proximal” quadratic term, forcing the solution to
be close to the consensus value. In (c) the resulting local solutions, minus the dual variables, are sent to the
feature processors, that averages these value and apply soft-thresholding, producing thus a new consensus
value. In (d), the feature processors send the updated consensus value columns to the partition processors,
which use this to update their dual variables, and the process is repeated.

as it is minimizing the sum of:

g1(Z1, . . . , ZL) =
∑
`∈L

∑
i∈I`

F (Z`[xi]Γ(`);YTi ), and g2(Z) = λ‖Z‖1,

subject to the equality constraints (10b). The ADMM iter-
ations (7) take the following form:

Zk+1
` = arg min

Z`∈RD×M

∑
i∈I`

F (Z`[xi]Γ(`);YTi ) + . . .

+
ρ

2
‖Z`−[Zk]·Γ(`)+U

k
` ‖22 (11a)

[Zk+1]dj = S λ
|Γ(j)|ρ

( 1

|Γ(j)|
∑
`∈Γ(j)

[Zk+1
` +Uk` ]dj

)
, ∀d, j (11b)

Uk+1
` = Uk` + Zk+1

` − [Zk+1]·Γ(`) (11c)

where Sκ : R→ R is the soft thresholding operator :

Sκ(a) =


a− κ, if a > k,

0, if |a| ≤ κ, and

a+ κ, if a < −κ,
(12)

which is applied to every element of the consensus matrix
Z, and matrices U` ∈ RD×|Γ(`)| are the dual variables of
the equality constraints. The steps outlined above can be
parallelized across L processors; we discuss how this paral-
lelization takes place below.

4.3 Parallel Architecture
In a parallel implementation of (11), both the organiza-

tion of parallel processors and the communication pattern
between them are determined by the bipartite graph G de-
scribed in Section 4.2. In particular, computation occurs
over L “partition” processors and M “feature” processors,
connected to each other according to G. The consensus
value Z is partitioned among the M feature processors in
M, with each j ∈ M storing the j-th column of the con-
sensus Z. This is in contrast to previous consensus ADMM
implementations, such as [1, 16], where the consensus step
(11b) is centralized and becomes a bottleneck for large M .

The trace and feature vectors dataset {xi;YTi }Ni=1 is par-
titioned among the L processors in L, so that processor `
stores the data indexed by I`

2. At each iteration k ∈ N, a

2For space efficiency reasons, processor ` in fact stores

partition processor ` updates the primal and dual variables
Z`, U` ∈ RD×|Γ(`)|, while a feature processor updates its cor-
responding column of Z. In more detail, matrices Z and U`
are initialized to zero, and the distributed execution of (11)
proceeds as follows at each step k ∈ N:

1. Each partition processor ` computes, in parallel, a local
solution Z`, fitting this to its local data through (11a).

2. Each partition processor ` sends each column of Z` +U`
to the corresponding feature processor in Γ(`).

3. Each feature processor j computes a new consensus value
Z from the received values through (11b): that is, it
averages the reported vector values, and then applies the
soft threshold (12) entry-wise.

4. Each feature processor j sends its new consensus value Z
to the partition processors in Γ(j), that update their dual
variables U` through (11c), and the process is repeated.

The above steps are outlined in Figure 2. The local op-
timization solved by partition processors amounts to per-
forming a local fit on the data they store, with an addi-
tional quadratic penalty. Intuitively, this additional “proxi-
mal” penalty term in (11a) “forces” the local solution to be
closer to the consensus value reported in the previous step by
the feature processors, thereby leading to convergence. The
sparsity of G implies that this solution scales well w.r.t. to
memory and communication costs, in both the number of ar-
ticles N as well as the number of features M . In particular,
if G is sparse, both the data stored by partition processors `
and the messages they exchange are O(Γ(`)). Moreover, no
single processor is required to store all of Z, or any variable
of the order of M or N , at any time.

In our implementation, the same processors play the role
of both “partition” and “feature” processors, while message
passing over G happens through appropriate map, reduce,
and join operations. We elaborate on this in Section 6.

4.4 Nested ADMM
Note that, in the distributed implementation of ADMM

described above, a slave processor ` ∈ L, solves at each it-
eration the optimization problem determined by (11a). In-
terestingly, this too can be solved through ADMM. To see
this, note that (11a) is equivalent to:

[xi]Γ(`), for i ∈ I`, or some other compact representation
of the sparse vector xi.



LocalOptimization

Minimize
∑
i∈I`

F (βi;YTi ) + ρ
2
‖Z` − Ẑ`‖22, (13a)

subject to: βi = Z`[xi]Γ(`), i ∈ I` (13b)

where Ẑ` = [Z]·Γ(`) −U` is the “target” value that the prox-
imal penalty forces the optimization to agree with. As a
separable objective with linear constraints, this also admits
a solution through ADMM. In particular, (7) reduces to:

βk+1
i ←arg min

βi

F (β;YTi )+
ρ′

2

∥∥∥βi−Zk` [xi]Γ(`)+u
k
i

∥∥∥2

2
(14a)

Zk+1
` ←arg min

Z`

ρ

2
‖Z`−Ẑ`‖22+

ρ′

2

n∑
i=1

∥∥βi−Z`[xi]Γ(`)+ui
∥∥2

2
(14b)

uk+1
i ← uki + βk+1

i − Zk+1
` [xi]Γ(`) (14c)

The iterative steps (14) ensure that no more than one trace
is at any time loaded in memory. Moreover, solving the lo-
cal problem through (14) implies that it is relatively easy
to incorporate, and train, a variety of different traditional
time series forecasting models. This is because (14a) in-
volves performing a traditional fit over a single trace, with
an additional proximal quadratic penalty term. With this
minor modification to existing code for traditional forecast-
ing models, a developer can exploit the above pipeline to
train jointly across multiple traces, while regressing param-
eters from features. We elaborate on this in Section 6.

5. TRAFFIC MODELS
In this section, we describe the parametric models f(β;Yt)

we use in our analysis.

Constant Model (CONST). As a baseline, we consider a
constant model that predicts that traffic at time t equals
the traffic at time t − 1, i.e, ŷ(t) = y(t − 1). In ARIMA
terminology [12], this is an ARIMA(0,1,0) model.

Vector Auto Regressive Model (VAR). We also consider
the Auto Regressive Model of order k (VAR(k)) [19, 3],
described in Example 1. Recall that under this model the
traffic at time t is a linear combination of past traffic: ŷ(t) =
β0 +

∑τ0
τ=1 Bτy(t−τ) where, β0 ∈ RP and {Bτ ∈ RP×P }τ0τ=1

are the parameters of the model, and τ0 is the length of
history used for auto-regression. In ARIMA terminology,
this is an ARIMA(τ0,0,0) model.

Constant Auto Regressive Model (CAR). CAR is a com-
bination of the CONST and VAR models, that fits a VAR model
to the error ∆y(t) = y(t) − y(t − 1) of the CONST model.
Equivalently, a prediction is given by: ŷ(t) = y(t−1)+β0 +∑τ0
τ=1 Bτ∆y(t− τ), and this is an ARIMA(τ0,1,0) model.

Simple Infection-Based Model (SI). Beyond the above
generic time series models, we also consider a model moti-
vated by meme-virality, that has been used in the past to
describe mentions of blog topics and hashtags [20]. The in-
tuition behind it is that social traffic acts like an infection:
someone visiting a website from Facebook or Twitter will,
with some probability, post this website on their Facebook
page, tweet about it, or otherwise share it with their friends.
Moreover, the “virality” of a pageview decays with time: for
example, a post containing a url is more likely to generate
additional page views when it is first posted, and becomes
less likely to do so as it moves down on a person’s feed.

These ideas are formalized by the following model adapted
from Matsubara et al. [20]:

ŷ(t) =
∑t
τ=1 By(t− τ)s(t− τ) + δ(t)

where:

• B ∈ RP×P is a matrix whose elements are positive,
and captures the “infectiousness” across different types
of traffic, and s is a dampening factor, given by s(t) =

1
(1+t)α

for a parameter α > 0. This is set to 1.5 in our

experiments, as recommended by Matsubara et al. [20].
• δ(t) ∈ RP is a vector whose coordinate p takes a non-zero

value for a single time τp ∈ N.

Intuitively, the dampening factor forces “virality” to decay
with time: page views that happen in the distant past (i.e.,
for large τ) have little effect present traffic, while δ(t) allows
for a single “spike” in each coordinate. In our experiments,
the spike at coordinate i is set to occur at the first non-
zero time of the trace. Under these constraints, fitting SI
through (1) becomes a convex optimization problem.3

Ordinary Differential Equation Model (ODE). Recall
that our traffic traces, exhibit a growth-and-decay patern, as
observed in Figure 1. One commonly used model to describe
such behavior is an Ordinary Differential Equation model
(ODE) [8]. In particular, ODE assumes y(t) satisfies:∑k

τ=0 βp,τy
(τ)
p (t) = 0, 1 ≤ p ≤ P (15)

where y
(τ)
p (t) = dτ

dtτ
yp(t), k is the order of the ODE and

β = {βp = [βp,0, . . . , βp,k]}Pp=1 are the parameters of the
model. Without loss of generality, we set βp,k = 1, 1 ≤ p ≤
P . Given β is known, one can solve the ODE (explicitly or
numerically) to forecast ŷ(t). Estimating β from the traffic
traces amounts to computing the derivatives of the training

trace {y(τ)
p (t)}kτ=0 and regressing the highest order deriva-

tive y
(k)
p (t) on the rest so that estimating β again reduces to

a convex least squares minimization problem. In our exper-
iments, we estimate derivatives using second order central
differences in the interior and first order differences on the
boundary of the trace.

6. IMPLEMENTATION
In this section, we describe how we implemented the par-

allel, nested ADMM through Spark.
Spark. Apache Spark is a programming framework for par-
allel cluster computing [28]. It is built around the con-
cept of Resilient Distributed Datasets (RDD), well suited
for distributed iterative algorithms like ADMM. RDDs are
distributed data structures that support map/reduce oper-
ations, as well as persistence: outcomes of operations are
stored in memory, and can be accessed directly by later op-
erations. Spark also provides a seamless interface to several
popular programming languages, including Python, which
we used. The main challenge in our setting is the fully par-
allel implementation of the distributed ADMM operations
over the bipartite graph outlined in Section 4.3, through
map, reduce, and join operations over RDDs. We outline
the design of our implementation below.
RDDs and Related Map-Reduce Operations. In
our implementation, computations are carried out on sev-

3We note that the original model presented in [20] is non-
convex, and SI is a simplification.



Algorithm 1 Pseudocode for SparkADMM

Input: data: RDD with tuples of the form (partitionid,datavalue), where datavalue is a list of (metadata,trace) pairs.
index: RDD with tuples of the form (coordinate,partitionid), storing the edges of graph G.

Output: Z: RDD with tuples of the form (coordinate, value), containing trained matrix
1: Distribute data and index in L machines, ensuring that each machine gets a single pair (partitionid,datavalue).
2: Initialize RDD Z with tuples of the form (coordinate, 0.0), and distribute it over the L machines.
3: Initialize RDDs Uloc and Zloc with tuples of the form (partitionid, [ (coordinate1,0.0), (coordinate2,0.0),. . . ]),

where the list of coordinate/value pairs contains coordinates relevant to this partitionid. Distribute them over the L machines
4: for k in [1:K] do
5: Zdistr = Z.join(index).map(lambda (coordinate,(value,partitionid)): (partitionid, (coordinate,value)).groupByKey()
6: Uloc = data.join(Zdistr).join(Uloc).join(Zloc).map(ApplyUlocUpdate) \* Eq. (11c) *\
7: Zloc = data.join(Zdistr).join(Uloc).join(Zloc).map(ApplyZlocUpdate) \* Eq. (11a) *\
8: ZlplUl = Zloc.join(Uloc).map(addPairLists).flatMap(lambda (partition, pairList): pairList)
9: Z = ZlplUl.map(lambda (coordinate:value):(coordinate,(value,1.0)))

.reduceByKey(lambda ((v0, c0), (v1, c1)):(v0 + v1, c0 + c1)).map(ApplyTresholdingOperator) \* Eq. (11b) *\
10: end for

eral RDDs indexed by one of two types of keys: partition
keys and feature keys. Operations on RDDs indexed by the
former correspond to the left-hand side of the bipartite graph
G, while operations on RDDs indexed by feature keys cor-
respond to the right-hand side.

In more detail, feature vectors and traces of articles are
stored together in an RDD called data, partitioned over arti-
cles across multiple machines. Similarly, the bipartite graph
G is stored as an RDD called index. The global Z matrix is
also stored as an RDD called Z, indexed by its coordinates,
and reconstructed at each iteration of ADMM. All RDDs
are distributed and stored over the same L machines.

These RRDs consist of (key,value) pairs. RDD data
comprises pairs of the form (partition-id,data-value), where
partition-id is a number between 1 and L and the data-value
is a list of trace and feature vector pairs describing the ar-
ticles in each partition. RDD Z comprises pairs of the form
(coordinate, value), corresponding to numerical values asso-
ciated with each coordinate of the matrix Z. Coordinates
are represented internally as (feature,parameter) pairs, rep-
resenting columns and rows of Z. In turn, index contains
pairs of the form (coordinate, partition-id), corresponding to
the edges in graph G: if feature j connects to partition `, all
coordinates (i.e., the entire column) of Z corresponding to
this feature are represented in index through an appropriate
pair linking them to this partition-id.

The implementation then proceeds according to the fol-
lowing alternating steps, outlined also in Algorithm 1:

• The RDDs data, Z, and index are distributed across L
processors, with values in Z initialized to zero.
• For each partition-id ` ∈ L, sub-matrices Z` and U` are

also constructed as RDDs. These comprise tuples of the
form (partition-id, list), where list contains the elements
of these matrices represented as (coordinate, value) pairs.
• At each iteration of ADMM, the columns of Z are scat-

tered across the L machines. This happens by first join-
ing Z with index, thus linking coordinates to partition-
ids they need to be replicated to. A map reorders data so
that the partition-id becomes the new key; subsequently,
a groupByKey() operation gathers all pairs correspond-
ing to a partition-id to a list, creating thus a list repre-
sentation of (Z)·Γ(`), for every partition-id `.
• This data structure, termed Zdistr, is joined with data,
Zloc, and Uloc in terms of their common keys (namely,
partition-ids). A map operation allows to compute the
new values of Uloc and Zloc, by applying code that im-
plements (11c) and (11a) on the three joined values.

• Finally, through a join and a map, the local sub-matrices
Zloc and Uloc are added together. To construct the new
consensus value, the lists representing the added matri-
ces are flattened into an RDD comprising (coordinate,
value) pairs. A reduce operation groups values corre-
sponding to the same coordinates together, sums them,
and counts the size of Γ(j). The sums and counts can
subsequently be filtered through a map that computes
the average and passes it through the soft thresholding
operator (12), producing the new consensus value Z.

We stress here that, through appropriate use of so-called
Spark partitioners, extra care is taken so that data (i.e.,
features and traces of articles), which is the largest RDD,
is loaded into memory once; its contents are never shuffled
or re-transmitted across processors. Maps, reduces with al-
ternating keys (either features or partition-ids), and joins
are used only to shuffle the resulting Z`, U` and Z around.
Moreover, the memory load at each processor is of the order
O(N

L
+ M

L
), thus scaling w.r.t. both articles and features.

Modular Implementation. There is an additional imple-
mentation advantage acheived through the nested technique
discussed in Section 4.4. In particular, the distribution of
datasets to machines (handled by Spark), the Lasso/`1 reg-
ularization, incorporating features into prediction, are all
coded in a manner completely agnostic to what model is
being used to fit parameters to the data. The model ap-
pears only in step (14a) of the nested implementation. As
such, our code for all of the above operations is written in-
dependently of actual prediction model used, and is thus
highly modular. Plugging in a new model reduces to sim-
ply implementing (14a). To that end, we define an abstract
Python class called AbstractModel, determining the inter-
face a developer needs to instantiate to run ADMM: beyond
I/O methods, all a developer needs to specify is (14a), which
amounts to fitting a model to a single trace, in the presence
of a quadratic regularization term. This allows us to incor-
porate (and scale!) multiple existing parametric forecasting
models very quickly into our code.

7. EVALUATION

7.1 Methodology
We test the performance of our predictions on a dataset

described in detail in Table 1. The dataset includes traf-
fic traces for 2K articles. Associated features are extracted
from article content, leading to a total of 16K unique fea-
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Figure 3: Prediction performance at peak traffic across RMSE, MAE, MNAE, and MASE, for different
parametric forecasting models, normalized to CONST performance. ‘Fit’ predicts the traffic at time tpeak by
fitting parameters over the trace up till tpeak − 1, while ‘Param’ uses parameters regressed over features.
Using regression parameters increases prediction performance almost universally, across all metrics and all
forecasting models. Moreover, VARk models, that assume stationarity, perform worse than ODEk or CARk models,
that instead assume transient behavior.

Table 1: Dataset Description

p N M
(types) (articles) (features)

3 2376 16420
T Peak Time Features per

(mean) (mean) article
69.27 7.94h 36.6

tures. Traffic traces are broken down by “internal”,“social”,
and “search” traffic, based on referrer provenance; each time
series is constructed by binning corresponding traffic every
hour. The average peak time among articles occurs at ap-
proximately 8 hours.

The prediction performance of each method is evaluated
through 3-fold cross validation. That is, we train a con-
sensus matrix Z through ADMM using 2/3 of the dataset
(the training set), and use it to predict traffic on 1/3 of the
dataset (the test set); this is repeated 3 times, with all tree
folds serving as test sets. Reported prediction performance
metrics are averaged across all three folds. On each test set,
we predict traffic for t = 1, . . . , 12 hours: that is, we predict
“internal”,“social”, and “search’ traffic for time t using only
(a) the trace Yt−1 collected so far (b) the article’s features,
and (c) the matrix Z (learned on the training set). By de-
fault, we set the prediction at time t = 0 to 0.0. Unless
otherwise mentioned, ADMM is performed over 200 execu-
tors with ρ = 0.2, λ = 103, 50 outer iterations of (11), and
local solutions to (13) computed through (14) until primal
and dual residuals norms are below 0.01.
Prediction Performance Metrics. We use the following
metrics to estimate the performance of different forecasting
methods. Given a traffic vector yi(t) and a prediction ŷi(t)
for article i = 1, . . . , N , we compute the usual root mean
square error (RMSE) and the mean absolute error (MAE)
as :

RMSE(t) =

√
1

N

∑N
i=1 ‖yi(t)− ŷi(t)‖

2
2, and

MAE(t) =
1

N

∑N
i=1 ‖yi(t)− ŷi(t)‖1.

We also compute two normalized errors, the Mean Normal-

ized Absolute Error (MNAE):

MNAE(t) =
1

N

∑N
i=1

‖yi(t)−ŷi(t)‖1
‖yi(t)‖1

.

as well as the so-called Mean Absolute Scaled Error (MASE),
that uses the one-step variance as a scaling factor [15]:

MASE(t) =
1

N

∑N
i=1

‖yi(t)−ŷi(t)‖1
1

T−1

∑T
τ=2 ‖yi(τ)−yi(τ−1)‖1

.

Forecasting models. We evaluate the prediction perfor-
mance of several forecasting methods outlined in Section 5.
In particular, we consider the following methods: ODE (with
degree k = 1, 2, 3), VAR (with parameter k = 1, 2), CAR (with
k = 1), and SI, all as defined in Section 5.

For all of the above methods, we evaluate the prediction
performance w.r.t. RMSE, MAE, MNAE, and MASE using
the following three variants of the forecasting methods.

1. Fitting. The first variant is standard fitting. That is, to
predict the traffic at time t for article i, we fit the best
possible parameters β using the trace Yt−1

i by solving
(1). That is, we obtain

βFIT = arg min
β∈Rd

t−1∑
τ=1

‖y(τ)− f(β;Yτ−1
i )‖22

and predict ŷi(t) = f(βFIT;Yτ − 1), where f is the func-
tion describing the parametrized forecasting model.

2. Using Regressed Parameters. The second variant
leverages learning through ADMM as well as article
metadata. For Z ∈ Rd×M the matrix learned from the
training set, and xi ∈ RM the features of article i, we
predict ŷi(t) = f(Zxi;Yτ−1

i ).
3. Regularized Fit. The final variant interpolates be-

tween the the above two variants. In particular, given
a ρ ≥ 0, we fit a parameter vector by adding a proximal
penalty term

βρ = arg min
β∈Rd

t−1∑
τ=1

‖y(τ)− f(β;Yτ−1
i )‖22 + ρ‖β − Zxi‖22,

(16)

and subsequently predict ŷi(t) = f(βρ;Yτi − 1).

Throughout our analysis, we use the constant method CONST
as a baseline method.
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Figure 4: MASE Prediction performance, for different parametric forecasting models, as a function of time.
‘Fit’ predicts the traffic at time t by fitting parameters over the trace up till t − 1, while ‘Param’ uses
parameters regressed from features. The optimal interpolation between the two through (16) is indicated by
ρ-opt. Feature-extracted parameters increase prediction performance almost universally, but its improvement
wanes as the size of the available trace increases. Again, models assuming stationarity perform worse than
CONST, while non-stationary models outperform it.

0 100 200 300 400 500 600 700 800 900
time (min)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

O
b

je
ct

iv
e

1e11 (a)

K = 50
K = 100
K = 200
K = 400

0 100 200 300 400 500 600 700 800 900
time (min)

0

5

10

15

20

25
P

ri
m

a
l 

R
e
si

d
u

a
l

(b)

K=50
K=100
K=200
K=400

0 100 200 300 400 500 600 700 800 900
time (min)

0

1

2

3

4

5

6

7

8

D
u

a
l 

R
e
si

d
u

a
l

(c)

K=50
K=100
K=200
K=400

Figure 5: Convergence performance. Subfigure (a) shows the trajectory of the objective function for the
ODE model of degree 3, for four different values of parallelism K. The primal and dual residuals are shown
in subfigures (b) and (c), respectively. Increasing the number of partitions leads to speedier consensus and
higher stability.

7.2 Prediction Performance
We evaluated the performance of prediction at the time of

peak traffic. For an article i, we define its peak traffic time
tpeaki as:

tpeaki = arg max
τ

‖yi(τ)‖1

The performance of our prediction methods at peak traffic
(i.e., at t = tpeaki ) is reported in Figure 3. For each method
and error metric, we report a normalized error: we divide
by the prediction error under the baseline prediction method
CONST.

Predicting peak traffic accurately is important for a
provider, as this indicates whether an article will be a good
performer or not (and, thus, should be promoted or ad-
vertized). Across metrics and forecasting methods, using
parameters regressed from features overwhelmingly outper-
forms prediction through traditional fitting a forecasting
model. Indeed, as discussed in the introduction, and as evi-
denced by Table 1, articles peak early on. As a result, simple
fitting yields worse prediction performance than regressing.
We also observe that models that assume stationarity like
VARk, perform worse than models that do not, like ODEk or
CARk. In fact, although in all cases regressed parameters out-
perform fitting, stationary models perform even worse than
CONST. This is expected, as stationary models do not span
the growth-and-decay shape of the trace curves exemplified
by Figure 1.

Similar observations can be drawn by studying these met-
rics at an arbitrary prediction time t. Figure 4 shows how
MASE evolves with the prediction time for several differ-
ent methods. We again see that parameters regressed from
features outperform fitted parameters, though the effect di-
minishes as more trace datapoints become available. In this
plot, we also show prediction performance using an optimal
value of ρ. We computed this as follows: for each t, we com-
pute the MASE at t using ρ in 10j , for j ranging from −4 to
+9, and plot the minimal value among all rhos. For models
assuming stationarity, such interpolation outperforms both
classic and feature-regressed estimation of parameters.

7.3 Convergence Performance
We next turn our attention to how ADMM scales with the

number of partitions K. We focus on training an ODE model
with degree k = 3 over the entire dataset. We train the
model using 50, 100, 200, and 400 partitions, each assigned
to its own Spark executor. During these experiments, we
set λ = 1000 and ρ = 2.0. Each executor solves the local
problem (13) through (14). In each of the four experiments,
we execute the nested solver (14) until convergence (norms
of primal and dual residuals below 0.01), with a maximum
number of iterations of (14) set to 600. This ensures that a
large fraction (close to 90%) of local solvers terminate early
and never reach this limit (c.f. the last row of the Table 2).

A summary of statistics for the four experiments can be
found in Table 2, while the trajectories of the objective of



Table 2: Summary statistics across partitions.
K = 50 K = 100 K = 200 K = 400

Traces per partition
Mean 47.52 23.76 11.88 5.94
Max 48 25 11 5
Min 46 23 13 7
Features per partition
Mean 907.94 502.75 277.67 153.92
Max 1042 666 171 73
Min 800 388 392 243
Local Solver (14) Statistics
Avg Time (sec) 275.83 160.37 140.01 130.12
Avg # of steps 170.50 105.74 83.90 65.03
Convergence 88.28% 94.14% 97.90% 98.39%

(4), as well as the norms of its primal and dual residuals,
are shown in Figure 5. Overall, increasing the number of
partitions speeds-up convergence. As indicated in Table 2,
increasing the partitions clearly reduces the time per iter-
ation, as well as the number of inner-loop steps required
for convergence of (14). However, setup overhead and the
cost of aggregating results lead to diminishing returns, with
400 partitions not leading to a significant improvement over
200 partitions. Rather surprisingly, the behavior of the pri-
mal residuals in Figure 5 indicates that, despite the large
number of partitions, the fact that local iterations terminate
quickly allows high-partition experiments to reach consensus
faster than experiments with few partitions. Interestingly,
the dual residuals also indicate that increasing the number
of partitions also reduces oscillations: a small number of
partitions, each one solving a large optimization problem,
yields to large, oscillating changes in Z from one iteration
to the next.

8. CONCLUSIONS
Our analysis indicates that training web traffic forecasting

models jointly can significantly improve performance of tra-
ditional forecasting models. Crucially, such joint training is
amenable to a highly parallelizable implementation through
ADMM. More broadly speaking, the above approach can be
used to arbitrary convex fitting problems that may benefit
from a “collaborative filtering” approach. Investigating such
applications of our framework beyond timeseries forecast-
ing, as well as in broader classes of applications beyond web
traffic, remains an interesting open problem.
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