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ABSTRACT
Log-structured merge (LSM) stores have emerged as the tech-
nology of choice for building scalable write-intensive key-
value storage systems. An LSM store replaces random I/O
with sequential I/O by accumulating large batches of writes
in a memory store prior to flushing them to log-structured
disk storage; the latter is continuously re-organized in the
background through a compaction process for efficiency of
reads. Though inherent to the LSM design, frequent com-
pactions are a major pain point because they slow down
data store operations, primarily writes, and also increase
disk wear. Another performance bottleneck in today’s state-
of-the-art LSM stores, in particular ones that use managed
languages like Java, is the fragmented memory layout of
their dynamic memory store.

In this paper we show that these pain points may be mit-
igated via better organization of the memory store. We
present Accordion – an algorithm that addresses these prob-
lems by re-applying the LSM design principles to memory
management. Accordion is implemented in the production
code of Apache HBase, where it was extensively evaluated.
We demonstrate Accordion’s double-digit performance gains
versus the baseline HBase implementation and discuss some
unexpected lessons learned in the process.
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1. INTRODUCTION

1.1 LSM Stores
Persistent NoSQL key-value stores (KV-stores) have be-

come extremely popular over the last decade, and the range
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of applications for which they are used continuously in-
creases. A small sample of recently published use cases in-
cludes massive-scale online analytics (Airbnb/ Airstream [2],
Yahoo/Flurry [7]), product search and recommendation (Al-
ibaba [13]), graph storage (Facebook/Dragon [5], Pinter-
est/Zen [19]), and many more.

The leading approach for implementing write-intensive
key-value storage is log-structured merge (LSM) stores [31].
This technology is ubiquitously used by popular key-value
storage platforms [9, 14, 16, 22, 4, 1, 10, 11]. The premise
for using LSM stores is the major disk access bottleneck,
exhibited even with today’s SSD hardware [14, 33, 34].

An LSM store includes a memory store in addition to a
large disk store, which is comprised of a collection of files
(see Figure 1). The memory store absorbs writes, and is
periodically flushed to disk as a new immutable file. This
approach improves write throughput by transforming expen-
sive random-access I/O into storage-friendly sequential I/O.
Reads search the memory store as well as the disk store.

The number of files in the disk store has adverse impact
on read performance. In order to reduce it, the system peri-
odically runs a background compaction process, which reads
some files from disk and merges them into a single sorted one
while removing redundant (overwritten or deleted) entries.
We provide further background on LSM stores in Section 2.

1.2 LSM Performance Bottlenecks
The performance of modern LSM stores is highly opti-

mized, and yet as technology scales and real-time perfor-
mance expectations increase, these systems face more strin-
gent demands. In particular, we identify two principal pain
points.

First, LSM stores are extremely sensitive to the rate and
extent of compactions. If compactions are infrequent, read
performance suffers (because more files need to be searched
and caching is less efficient when data is scattered across
multiple files). On the other hand, if compactions are too
frequent, they jeopardize the performance of both writes
and reads by consuming CPU and I/O resources, and by
indirectly invalidating cached blocks. In addition to their
performance impact, frequent compactions increase the disk
write volume, which accelerates device wear-out, especially
for SSD hardware [27].

Second, as the amount of memory available in commod-
ity servers rises, LSM stores gravitate towards using larger
memory stores. However, state-of-the-art memory stores are



organized as dynamic data structures consisting of many
small objects, which becomes inefficient in terms of both
cache performance and garbage collection (GC) overhead
when the memory store size increases. This has been re-
ported to cause significant problems, which developers of
managed stores like Cassandra [4] and HBase [1] have had
to cope with [12, 3]. Note that the impact of GC pauses is
aggravated when timeouts are used to detect faulty storage
nodes and initiate fail-over.

Given the important role that compaction plays in LSM
stores, it is not surprising that significant efforts have been
invested in compaction parameter tuning, scheduling, and so
on [6, 18, 17, 32]. However, these approaches only deal with
the aftermath of organizing the disk store as a sequence of
files created upon memory store overflow events, and do not
address memory management. And yet, the amount of data
written by memory flushes directly impacts the ensuing flush
and compaction toll. Although the increased size of memory
stores makes flushes less frequent, today’s LSM stores do
not physically delete removed or overwritten data from the
memory store. Therefore, they do not reduce the amount of
data written to disk.

The problem of inefficient memory management in man-
aged LSM stores has received much less attention. The
only existing solutions that we are aware of work around
the lengthy JVM GC pauses by managing memory alloca-
tions on their own, either using pre-allocated object pools
and local allocation buffers [3], or by moving the data to
off-heap memory [12].

1.3 Accordion
We introduce Accordion, an algorithm for memory store

management in LSM stores. Accordion re-applies to the
memory store the classic LSM design principles, which were
originally used only for the disk store. The main insight is
that the memory store can be partitioned into two parts:
(1) a small dynamic segment that absorbs writes, and (2) a
sequence of static segments created from previous dynamic
segments. Static segments are created by in-memory flushes
occurring at a higher rate than disk flushes. Note that the
key disadvantage of LSM stores – namely, the need to search
multiple files on read – is not as significant in Accordion
because RAM-resident segments can be searched efficiently,
possibly in parallel.

Accordion takes advantage of the fact that static segments
are immutable, and optimizes their index layout as flat; it
can further serialize them, i.e., remove a level of indirection.
The algorithm also performs in-memory compactions, which
eliminate redundant data before it is written to disk. Accor-
dion’s data organization is illustrated in Figure 2; Section 3
fleshes out its details.

The new design has the following benefits:

• Fewer compactions. The reduced footprint of immutable
indices as well as in-memory compactions delay disk
flushes. In turn, this reduces the write volume (and
resulting disk wear) by reducing the amount of disk
compactions.

• More keys in RAM. Similarly, the efficient memory or-
ganization allows us to keep more keys in RAM, which
can improve read latency, especially when slow HDD
disks are used.

• Less GC overhead. By dramatically reducing the size
of the dynamic segment, Accordion reduces GC over-
head, thus improving write throughput and making
performance more predictable. The flat organization
of the static segments is also readily amenable to off-
heap allocation, which further reduces memory con-
sumption by allowing serialization, i.e., eliminating the
need to store Java objects for data items.

• Cache friendliness. Finally, the flat nature of im-
mutable indices improves locality of reference and hence
boosts hardware cache efficiency.

Accordion is implemented in HBase production code. In
Section 4 we experiment with the Accordion HBase imple-
mentation in a range of scenarios. We study production-size
datasets and data layouts, with multiple storage types (SSD
and HDD). We focus on high throughput scenarios, where
the compaction and GC toll are significant.

Our experiments show that the algorithm’s contribution
to overall system performance is substantial, especially un-
der a heavy-tailed (Zipf) key access distribution with small
objects, as occurs in many production use cases [35]. For
example, Accordion improves the system’s write through-
put by up to 48%, and reduces read tail latency (in HDD
settings) by up to 40%. At the same time, it reduces the
write volume (excluding the log) by up to 30%. Surprisingly,
we see that in many settings, disk I/O is not the principal
bottleneck. Rather, the memory management overhead is
more substantial: the improvements are highly correlated
with reduction in GC time.

To summarize, Accordion takes a proactive approach for
handling disk compaction even before data hits the disk, and
addresses GC toll by directly improving the memory store
structure and management. It grows and shrinks a sequence
of static memory segments resembling accordion bellows,
thus increasing memory utilization and reducing fragmen-
tation, garbage collection costs, and the disk write volume.
Our experiments show that it significantly improves end-to-
end system performance and reduces disk wear, which led
to the recent adoption of this solution in HBase production
code; it is generally available starting the HBase 2.0 release.
Section 5 discusses related work and Section 6 concludes the
paper.

2. BACKGROUND
HBase is a distributed key-value store that is part of the

Hadoop open source technology suite. It is implemented in
Java. Similarly to other modern KV-stores, HBase follows
the design of Google’s Bigtable [22]. We sketch out their
common design principles and terminology.

Data model KV-stores hold data items referred to as rows
identified by unique row keys. Each row can consist of mul-
tiple columns (sometimes called fields) identified by unique
column keys. Co-accessed columns (typically used by the
same application) can be aggregated into column families
to optimize access. The data is multi-versioned, i.e., multi-
ple versions of the same row key can exist, each identified
by a unique timestamp. The smallest unit of data, named
cell, is defined by a combination of a row key, a column key,
and a timestamp.

The basic KV-store API includes put (point update of one
or more cells, by row key), get (point query of one or more



Figure 1: A log-structured merge (LSM) store con-
sists of a small memory store (MemStore in HBase)
and a large disk store (collection of HFiles). Put op-
erations update the MemStore. The latter is double-
buffered: a flush creates an immutable snapshot of
the active buffer and a new active buffer. The snap-
shot is then written to disk in the background.

columns, by row key, and possibly column keys), and scan
(range query of one or more columns, of all keys between an
ordered pair of begin and end row keys).

Data management KV-stores achieve scalability by shard-
ing tables into range partitions by row key. A shard is called
region in HBase (tablet in Bigtable). A region is a collection
of stores, each associated with a column family. Each store
is backed by a collection of files sorted by row key, called
HFiles in HBase (sst files in Bigtable).

In production, HBase is typically layered on top of Hadoop
Distributed Filesystem (HDFS), which provides a reliable
file storage abstraction. HDFS and HBase normally share
the same hardware. Both scale horizontally to thousands
of nodes. HDFS replicates data for availability (3-way by
default). It is optimized for very large files (the default
block size is 64MB).

Data access in HBase is provided through region servers
(analogous to tablet servers in Bigtable). Each region server
controls multiple stores (tens to hundreds in production set-
tings). For locality of access, the HBase management plane
(master server) tries to lay out the HFiles in HDFS so that
their primary replicas are collocated with the region servers
that control them.

LSM stores Each store is organized as an LSM store,
which collects writes in a memory store – MemStore in
HBase – and periodically flushes the memory into a disk
store, as illustrated in Figure 1. Each flush creates a new
immutable HFile, ordered by row key for query efficiency.
HFiles are created big, hence flushes are relatively infre-
quent.

To allow puts to proceed in parallel with I/O, MemStore
employs double buffering: it maintains a dynamic active
buffer absorbing puts, and a static snapshot that holds the
previous version of the active buffer. The latter is written to
the filesystem in the background. Both buffers are ordered
by key, as are the HFiles.

A flush occurs when either the active buffer exceeds the
region size limit (128MB by default) or the overall footprint
of all MemStores in the region server exceeds the global size

limit (40% of the heap by default). Flush first shifts the cur-
rent active buffer to be the snapshot (making it immutable)
and creates a new empty active buffer. It then replaces
the reference to the active buffer, and proceeds to write the
snapshot as a new HFile.

In order to guarantee durability of writes between flushes,
updates are first written to a write-ahead log (WAL). HBase
implements the logical WAL as collection of one or more
physical logs per region server, called HLogs, each consisting
of multiple log files on HDFS. As new data gets flushed to
HFiles, the old log files become redundant, and the system
collects them in the background. If some HLog grows too
big, the system may forcefully flush the MemStore before
the memory bound is reached, in order to enable the log’s
truncation. Since logged data is only required at recovery
time and is only scanned sequentially, HLogs may be stored
on slower devices than HFiles in production (e.g., HDDs
vs SSDs). Real-time applications often trade durability for
speed by aggregating multiple log records in memory prior
to asynchronously writing them to WAL in a bulk.

To keep the number of HFiles per store bounded, com-
pactions merge multiple files into one, while eliminating re-
dundant (overwritten) versions. If compactions cannot keep
up with the flush rate, HBase may either throttle or totally
block puts until compactions successfully reduce the number
of files.

Most compactions are minor, in the sense that they merge
a subset of the HFiles. Major compactions merge all the
region’s HFiles. Because they have a global view of the
data, major compactions also eliminate tombstone versions
that indicate row deletions. Typically, major compactions
incur huge performance impact on concurrent operations. In
production, they are either carefully scheduled or performed
manually [6].

The get operation searches for the key in parallel in the
MemStore (both the active and the snapshot buffers) and in
the HFiles. The HFile search is expedited through Bloom
filters [22], which eliminate most redundant disk reads. The
system uses a large RAM cache for popular HFile blocks (by
default 40% of the heap).

Memory organization The MemStore’s active buffer is
traditionally implemented as a dynamic index over a collec-
tion of cells. For the index, HBase uses the standard Java
concurrent skiplist map [8]. Data is multi-versioned – every
put creates a new immutable version of the row it is applied
to, consisting of one or more cells. Memory for data cells is
allocated in one of two ways as explained below.

This implementation suffers from two drawbacks. First,
the use of a big dynamic data structure leads to an abun-
dance of small objects and references, which inflate the in-
memory index and induce a high GC cost. The overhead is
most significant when the managed objects are small, i.e.,
the metadata-to-data ratio is big [35]. Second, the version-
ing mechanism makes no attempt to eliminate redundancies
prior to flush, i.e., the MemStore size steadily grows, in-
dependently of the workload. This is especially wasteful
for heavy-tailed (e.g., power law) key access distributions,
which are prevalent in production workloads [24].

Memory allocation HBase implements two schemes for
allocating data cells in the MemStore: either (1) each cell is
a standard Java object called pojo – Pure Old Java Object;



or (2) cells reside in a bulk-allocated byte array managed
by the MSLAB – MemStore Local Allocation Buffer [3] –
module. In HBase 2.0, MSLAB is mostly used for off-heap
memory allocation. With this approach, the MemStore’s
memory consists of large blocks, called chunks. Each chunk
is fixed in size and holds data for multiple cells pertaining
to a single MemStore.

3. Accordion
We describe Accordion’s architecture and basic operation

in Section 3.1. We then discuss in-memory compaction poli-
cies in Section 3.2 and implementation details and thread
synchronization in Section 3.3. Section 3.4 discusses the in-
dex layout in off-heap allocation.

3.1 Overview
Accordion introduces a compacting memory store to the

LSM store design framework. In contrast to the traditional
memory store, which maintains RAM-resident data in a sin-
gle monolithic data structure, Accordion manages data as
a pipeline of segments ordered by creation time. Each seg-
ment contains an index over a collection of data cells. At
all times, the most recent segment, called active, is muta-
ble; it absorbs put operations. The rest of the segments are
immutable. In addition to searching data in the disk store,
get and scan operations traverse all memory segments, sim-
ilarly to a traditional LSM store read from multiple files.
Memory segments do not maintain Bloom filters like HFiles
do, but they maintain other metadata like key ranges and
time ranges to eliminate redundant reads. In addition, it is
possible to search in multiple memory segments in parallel.

Figure 2 illustrates the Accordion architecture. It is pa-
rameterized by two values:

• A – fraction of the memory store allocated to the active
segment; and

• S – upper bound on the number of immutable seg-
ments in the pipeline.

As our experiments show (Section 4), the most effective pa-
rameter values are quite small, e.g., 0.02 ≤ A ≤ 0.05, and
2 ≤ S ≤ 5.

Once the active segment grows to its size bound (a fraction
A of the memory store’s size bound), an in-memory flush is
invoked. The in-memory flush makes the active segment
immutable and creates a new active segment to replace it.

In case there is available space in the pipeline (the number
of pipeline segments is smaller than S), the replaced active
segment is simply flattened and added to the pipeline. Flat-
tening a segment involves replacing the dynamic segment
index (e.g., skiplist) by a compact ordered array suitable for
immutable data, as shown in Figure 3. The indexed data
cells are unaffected by the index flattening.

The flat index is more compact than a skiplist, and so re-
duces the MemStore’s memory footprint, which delays disk
flushes, positively affecting both read latency (by increas-
ing the MemStore’s hit rate) and write volume. It is also
cache- and GC-friendly, and supports fast lookup via binary
search. In managed environments, it can be allocated in off-
heap (unmanaged) memory, which can improve performance
predictability as discussed in Section 3.4 below.

Figure 2: Accordion’s compacting memory store ar-
chitecture adds a pipeline of flat segments between
the active segment and the snapshot. The memory
store includes a small dynamic active segment and
a pipeline of flat segments. A disk flush creates a
snapshot of the pipeline for writing to disk.

Once the number of immutable segments exceeds S, the
segments in the pipeline are processed to reduce their num-
ber. At a minimum, an in-memory merge replaces the in-
dices of multiple segments by a single index covering data
that was indexed by all original segments, as shown in Fig-
ure 3c. This is a lightweight process that results in a single
segment but does not eliminate redundant data versions.
For example, if a cell with the same row key and column
key is stored in two different segments in the pipeline (with
two different timestamps) then after the merge both cells
will appear consecutively in the merged segment.

Optionally, an in-memory compaction can further perform
redundant data elimination by creating a single flat index
with no redundancies and disposing redundant data cells,
as shown in Figure 3d. In the example above only the more
recent cell will appear in the compacted segment. In case
the memory store manages its cell data storage internally
(via MSLAB), the surviving cells are relocated to a new
chunk (to avoid internal chunk fragmentation). Otherwise,
the redundant cells are simply de-referenced, allowing the
garbage-collector to reclaim them. The choice whether to
eliminate redundant data (i.e., perform compaction) or not
(perform only merge) is guided by the policies described in
Section 3.2 below.

Flushes to disk work the same way as in a standard LSM
store: A disk flush first shifts all pipeline segments to the
snapshot, which is not part of the pipeline, while the pipeline
is emptied so that it may absorb new flat segments. A back-
ground flush process merges all snapshot segments while
eliminating redundancies, and streams the result to a new
file. After the file is written, the snapshot segments are
freed.

In case the disk flush process empties the pipeline while
an in-memory compaction is attempting to merge some seg-
ments, the latter aborts. This behavior is valid since in-
memory compactions are an optimization.
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Figure 3: The active segment has a skiplist index. After a segment is added to the pipeline its index is flattened
into an ordered array index. When the pipeline consists of S segments, they are either merged or compacted.
During a flattening or merge processes the data remains untouched. During a compaction indices are merged
and redundancies in the data are eliminated. The key K was updated twice on timestamp ts = 1 and later
on timestamp ts = 2. Only in compacted segment the redundant version (ts = 1) is eliminated.

3.2 Compaction Policies
Redundant data elimination induces a tradeoff. On the

one hand, merging only search indices without removing re-
dundancies is a lighter-weight process. Moreover, this ap-
proach is friendly to the managed memory system because
the entire segment is freed at once, whereas removing (re-
dundant) cells from existing segments burdens the memory
management system (in particular, the garbage collector)
by constantly releasing small objects. On the other hand,
by forgoing redundant data elimination we continue to con-
sume memory for overwritten data; this is significant in
production-like heavy-tailed distributions where some keys
are frequently overwritten. Removing these redundancies
further delays disk flushes, which both improves read la-
tency (thanks to more queries being satisfied from memory)
and reduces the write volume.

Our HBase 2.0 implementation includes the two extreme
memory compaction policies:

Basic (low-overhead) never performs redundant data elim-
ination. Rather, once a segment becomes immutable,
flattens its index, and once the pipeline size exceeds
S, merges all segment indices into one.

Eager (high-overhead, high-reward under self-similar work-
loads) immediately merges a segment that becomes
immutable with the current (single) pipeline segment,
while eliminating redundant data.

Our experiments (reported in the next section) show that
the Eager policy is typically too aggressive, in particular
when A is small, and the benefits from reducing the mem-
ory footprint are offset by the increased management (and
in particular, garbage collection) overhead. We therefore
present in this paper a third policy:

Adaptive (the best of all worlds) a heuristic that chooses
whether to eliminate redundant data (as in Eager) or
not (as in Basic) based on the level of redundancy in
the data and the perceived cost-effectiveness of com-
paction. Adaptive works at the level of a single LSM
store, i.e., triggers redundancy elimination only for
those stores where positive impact is expected.

Adaptive uses two parameters to determine whether to
perform data redundancy elimination:

1. A throttling parameter t grows with the amount of
data that can benefit from redundancy elimination.

Initially, t = 0.5; it then grows exponentially by 2%
with the number of in-memory flushes, and is reset
back to the default value (namely 0.5) upon disk flush.
Thus, t is bigger when there is more data in the Mem-
Store.

2. The uniqueness parameter, u, estimates the ratio of
unique keys in the memory store based on the fraction
of unique keys encountered during the previous merge
of segment indices.

Note that the accuracy of u at a given point in time de-
pends on the number of merges that occurred since the last
disk flush or data-merge. Initially, u is zero, and so the first
in-memory compaction does not employ data-merge. Then,
the estimate is based on the S merged components, which
at the time for the second in-memory compaction is roughly
one half of the relevant data, since the pipeline holds S − 1
unmerged components. Over time, u becomes more accurate
while t grows.

Adaptive triggers redundancy elimination with probability
t if the fraction of redundant keys 1−u exceeds a parameter
threshold R. The rationale for doing so is that prediction
based on u becomes more accurate with time, hence com-
pactions become more important because the component is
bigger and more space can be saved.

WAL Truncation Since in-memory compaction delays
disk flushes, it can cause HLog files (WAL) to become longer
and in some rare cases even unbounded. Although the sys-
tem protects against such scenarios by forcing flush to disk
whenever the HLog size exceeds a certain threshold, this
threshold is fairly high, and it is better to try and keep the
HLog files as small as possible without losing data. To fa-
cilitate effective WAL truncation, Accordion maintains the
oldest version number (smallest timestamp) of any key in
the MemStore. This number monotonically increases due to
in-memory compactions, which eliminate old versions (and
specifically, the oldest version of each key). Whenever this
number increases, the WAL is notified and old log files are
collected.

3.3 Concurrency
A compacting memstore is comprised of an active seg-

ment and a double-ended queue (pipeline) of inactive seg-
ments. The pipeline is accessed by read APIs (get and scan),



as well as by background disk flushes and in-memory com-
pactions. The latter two modify the pipeline by adding, re-
moving, or replacing segments. These modifications happen
infrequently.

The pipeline’s readers and writers coordinate through a
lightweight copy-on-write, as follows. The pipeline object is
versioned, and updates increase the version.

Reads access the segments lock-free, through the version
obtained at the beginning of the operation. If an in-memory
flush is scheduled in the middle of a read, the active segment
may migrate into the pipeline. Likewise, if a disk flush is
scheduled in the middle of a read, a segment may migrate
from the pipeline to the pre-flush snapshot buffer. The cor-
rectness of reads is guaranteed by first taking the reference
of the active segment then the pipeline segments and finally
the snapshot segments. This way, a segment may be encoun-
tered twice but no data is lost. The scan algorithm filters
out the duplicates.

Each modification takes the following steps: (1) promotes
the version number; (2) clones the pipeline, which is a small
set of pointers, (3) performs the update on the cloned ver-
sion, and (4) uses a compare-and-swap (CAS) operation to
atomically swap the global reference to the new pipeline
clone, provided that its version did not change since (1).
Note that cloning is inexpensive – only the segment ref-
erences are copied since the segments themselves are im-
mutable. For example, in-memory compaction fails if a disk
flush concurrently removes some segments from the pipeline.

3.4 Off-Heap Allocation
As explained above, prior to Accordion, HBase allocated

its MemStore indicies on-heap, using a standard Java skiplist
for the active buffer and the snapshot. Accordion continues
to use the same data structure – skiplist – for the active
segment, but adopts arrays for the flat segments and snap-
shot. Each entry in an active or flat segment’s index holds
a reference to a cell object, which holds a reference to a
buffer holding a key-value pair (as pojo or in MSLAB), as
illustrated in Figure 4a. HBase MSLAB chunks may be al-
located off-heap.

Accordion’s serialized version takes this approach one step
further, and allocates the flat segment index using MSLAB
as well as the data. A serialized segment has its index and
data allocated via the same MSLAB object, but on differ-
ent chunks. Each MSLAB may reside either on- or off-heap.
The frequent in-memory flushes are less suitable for serial-
ized segments, because upon each in-memory flush the new
serialized segment and thus new index chunk is allocated.
When the index is not big enough to populate the chunk,
the chunk is underutilized.

Serialized segments forgo the intermediate cell objects,
and have array entries point directly to the the chunks hold-
ing keys and values, as illustrated in Figure 4b. Removing
the cell objects yields a substantial space reduction, espe-
cially when data items are small, and eliminates the inter-
mediate level of indirection.

Offloading data from the Java heap has been shown to
be effective for read traffic [13]. However, it necessitates
recreating temporary cell objects to support HBase’s inter-
nal scan APIs. Nevertheless, such temporary objects con-
sume a small amount of space on-demand, and these objects
are deallocated rapidly, making them easier for the GC pro-
cess to handle.

4. PERFORMANCE STUDY
We fully implemented Accordion in HBase, and it is gener-

ally available in HBase 2.0 and up. We now compare Accor-
dion in HBase to the baseline HBase MemStore implemen-
tation. Our evaluation explores Accordion’s different poli-
cies and configuration parameters. We experiment with two
types of production machines with directly attached SSD
and HDD storage. We exercise the full system with multiple
regions, layered over HDFS as in production deployments.

We present the experiment setup in Section 4.1 and the
evaluation results in Section 4.2.

4.1 Methodology

Experiment setup Our experiments exploit two clusters
with different hardware types. The first consists of five 12-
core Intel Xeon 5 machines with 48GB RAM and 3TB SSD
storage. The second consists of five 8-core Intel Xeon E5620
servers with 24GB RAM and 1TB HDD storage. Both clus-
ters have a 1Gbps Ethernet interconnect. We refer to these
clusters as SSD and HDD, respectively.

In each cluster, we use three nodes for HDFS and HBase
instances, which share the hardware. The HDFS data repli-
cation ratio is 3x. HBase exploits two machines as region
servers, and one as a master server. The workload is driven
by the two remaining machines, each running up to 12 client
threads.

A region server runs with a 8GB heap, under G1GC mem-
ory management. For serialized segment experiments, we
use MSLAB memory management. We use the default mem-
ory layout, which allocates 40% of the heap (roughly 3GB)
to the MemStore area, and 40% more to the read-path block
cache. We apply an asynchronous WAL in order to focus
on real-time write-intensive workloads (a synchronous WAL
implies an order-of-magnitude slower writes). The log ag-
gregation period is one second.

Workloads Data resides in one table, pre-split into fifty
regions (i.e., each region server maintains twenty-five re-
gions). The table has a single column family with four
columns. We populate cells with 25-byte values, and so each
row comprises 100 bytes; this is a typical size in production
workloads [35].

We seek to understand Accordion’s performance impact in
large data stores. We therefore perform 300M–500M writes,
generating 30–50GB of data in each experiment. As a re-
sult, experiments are fairly long – the duration of a single
experiment varies from approximately 1.5 hours to over 12
hours, depending on the setting (workload, algorithm, and
hardware type). In addition, given that Accordion mostly
impacts the write-path, we focus our study mainly on write-
intensive workloads. For completeness, we also experiment
with read-dominated workloads, in order to show that reads
(gets and scans) benefit from or are indifferent to the change
in the write-path.

We use the popular YCSB benchmarking tool [23] to gen-
erate put, get, and scan requests. Each put writes a full row
(4 cells, 100 bytes). Each get retrieves a single cell, while
scans retrieve all four cells of every scanned row. The length
of each scan (number of retrieved cells) is chosen uniformly
at random in the range 1–100. In order to produce a high
load, updates are batched on the client side in 10KB buffers.

In each experiment, all operations draw keys from the
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Figure 4: The difference between the flat segment and the serialized segment. The ordered array of the cell
objects cannot be directly serialized and streamed into an off-heap chunk. The transformation shrinks the
cell object into just 20 bits, and writes on the index chunk.

same distribution over a key range of 100M items. We ex-
periment with two distributions: heavy-tailed (Zipf) and
uniform (the latter is less representative of real workloads
and is studied for reference only). The Zipf distribution is
generated following the description in [26], with θ = 0.99%
(YCSB standard).

Measurements Our experiments measure HBase’s through-
put and latency in the different settings. To reason about
the results, we explore additional signals such as I/O statis-
tics and GC metrics. While in write-only workloads we mea-
sure performance throughout the experiment, we precede
each mixed-workload experiment (read/write or scan/write)
with a write-only load phase that populates the table; per-
formance of the load-phase is not reported.

We repeated each experiment (with a particular workload,
particular hardware, and particular parameter settings) a
handful of times (usually five) to verify that the results are
not spurious. The median result is reported.

4.2 Evaluation Results
We compare the different Accordion policies (Basic, Adap-

tive, and Eager) to the legacy MemStore implementation, to
which we refer as NoCompaction. Here, Adaptive is studied
under multiple redundancy thresholds: R = 0.2, R = 0.35
and R = 0.5 (the smaller the ratio, the more aggressively
the policy triggers in-memory compaction).

Accordion’s parametersA (active segment fraction bound)
and S (pipeline number of segments bound) are tuned to
values that optimize performance for the Basic version of
Accordion. We use A = 0.02 and S = 5. Section 4.2.4
presents our parameter exploration.

4.2.1 Write-Only Workloads
Our first benchmark set exercises only put operations. It

starts from an empty table and performs 500M puts, in par-
allel from 12 client threads. We study the Zipf and uniform
key distributions. The experiments measure write through-
put (latency is not meaningful because puts are batched),
as well as disk I/O and GC metrics.

Write throughput Figure 5 depicts the performance speed-
up of Basic and Adaptive over NoCompaction. Table 1 pro-
vides the absolute throughput numbers. For the Zipf bench-
mark, the maximal speedup is 47.6% on SSD and 25.4% on
HDD. For the uniform benchmark, which has neither redun-

dancy nor locality, they are 23.8% and 8.9%, respectively.
The gain is significantly larger for the system with SSD stor-
age, which is much faster on the I/O side. Being more CPU-
bound than I/O-bound, its write throughput is more depen-
dent on the MemStore speed than on background writes to
the file system.

Surprisingly, the Basic policy, which flattens and merges
segment indices but avoids redundancy elimination, yields
the largest throughput gain. We explain this as follows. By
reducing the active segment size to A = 2% of the Mem-
Store size, all Accordion policies improve insertion time of
new versions into the dynamic index through improved lo-
cality of access and search time in the skiplist. However,
they affect the garbage collection in different ways. Basic
adds negligible overhead to garbage collection by recycling
the index arrays. Similarly to NoCompaction, it releases
memory in big bursts upon disk flush.

Eager is not included in this figure, because its perfor-
mance with these parameters is below the baseline, as we
show in the sequel. It eliminates redundant data at a con-
stant high rate, which is less friendly for generational GC.
And as we further show below, GC overhead is a strong
predictor for overall performance.

Adaptive strikes a balance between Basic and Eager. Its
performance is much closer to Basic because it is workload-
driven and selective about the regions in which it performs
in-memory compaction.

Note that Adaptive is only marginally slower than Basic’s
(3% to 7% throughput for the Zipf distribution on SSD,
immaterial in other cases). In what follows, we substantiate
its savings on the I/O side. Going forward, we focus on the
more realistic Zipf workload.

I/O metrics With respect to write amplification, the pic-
ture is reversed. In this regard, Basic provides modest sav-
ings. It writes 13% less bytes than NoCompaction on SSD,
and 8% on HDD. In contrast, Adaptive slashes the number
of flushes and compactions by 58% and 61%, respectively,
and the number of bytes written by almost 30%. As ex-
pected, the lower the redundancy estimate threshold R, the
more aggressive the algorithm, and consequently, the higher
the savings. Figure 6 and Table 2 summarize the results.

Note that the amount of data written to WAL (approxi-
mately 45% of the write volume) remains constant across all
experiments. HBase operators often choose placing log files
on inexpensive hard disks, since they are only needed for



Table 1: Write throughput (operations per second) of the best Accordion policy (Basic) vs NoCompaction,
across multiple key distributions and disk hardware types.

Zipf, SSD Zipf, HDD Uniform, SSD Uniform, HDD
NoCompaction 75,861 60,457 74,971 35,342

Basic 115,730 78,392 92,816 38,488

(a) Zipf distribution (b) Uniform distribution

Figure 5: Write throughput speedup vs NoCompaction (HBase legacy MemStore) achieved by Accordion with
Basic and Adaptive policies. Measured on the Zipf and uniform key distributions, on SSD and HDD hardware.
In SSD systems, Basic increases the write throughput by close to 48%.

recovery, and in this case disk wear is not a major concern
for WAL data.

All-in-all, there is a tradeoff between the write throughput
and storage utilization provided by the different Accordion
policies. Adaptive provides multiple operating points that
trade major storage savings for minor performance losses.

Garbage collection We saw above that redundancy elim-
ination proved to be less impactful than memory manage-
ment overhead, especially in systems with fast SSD hard-
ware. Figure 7, which studies GC overhead for a range of
policies and tuning parameters, further corroborates this ob-
servation. It shows a clear negative correlation between the
GC time and the write throughput. Note that this does not
necessarily mean that GC time is the only reason for per-
formance reduction. Rather, GC cycles may be correlated
with other costs, e.g., memory fragmentation, which reduces
locality.

Serialized and off-heap segments We also experiment
with the write-only workload using serialized segments, whose
indices are allocated on MSLAB chunks (as described in Sec-
tion 3.4). We compare them to un-serialized flat segments,
to which we refer here shortly as flat. We concentrate on
the Zipf key distribution and SSD hardware. In these ex-
periments we run with synchronous WAL. We run two sets
of experiments: in the first all MSLAB chunks are allocated
on-heap, and in the second – off-heap. For the serialized seg-
ments we set parameter A to 0.1, for less frequent in-memory
flushes. Figure 8 presents the throughput speedup using flat
and serialized segments with the Basic policy over NoCom-
paction. For the flat Basic, the speedup is 27% on-heap and
29% off-heap. For the serialized Basic, the speedup is 33%
on-heap and 44% off-heap. The gain from the serialized Ba-
sic is larger for the off-heap case, because when the index is
taken off-heap the JVM GC has less work to do.

4.2.2 Read-Write Workload
Our second benchmark studies read latencies under heavy

write traffic. We run batched puts from 10 client threads

and single-key gets from two other threads. The keys of all
operations are distributed Zipf. The workload is measured
after loading 30GB of data (300M write operations) to make
sure most if not all keys have some version on disk. We
measure the 50th, 75th, 90th, 95th and 99th get latency
percentiles. Figure 9 depicts the relative latency slowdown
of Basic and Adaptive (R = 0.2) versus NoCompaction.

The HDD systems enjoy a dramatic reduction in tail la-
tencies (15% to 40% for Adaptive). We explain this as fol-
lows. The tail latencies are cache misses that are served
from disk. The latter are most painful with HDDs. Thanks
to in-memory compaction, Adaptive prolongs the lifetime of
data in MemStore. Therefore, more results are served from
MemStore, i.e., there are less attempts to read from cache,
and consequently also from disk.

In SSD systems, the get latencies are marginally slower
in all percentiles (e.g., the 95th percentile is 2.13ms in No-
Compaction versus 2.26ms in Adaptive). This happens be-
cause most reads are dominated by in-memory search speed,
which depends on the number of segments in the MemStore
pipeline, which was set to 5 in this experiment. The other
factor is increased GC overhead in Adaptive that stems from
redundancy elimination.

4.2.3 Scan-Write Workload
Finally, we study scans on SSD under Zipf key distribu-

tion. We exercise the standard YCSB scans workload (work-
load e), where 95% of 500 , 000 operations are short range
queries (50 keys in expectation), and the remaining 5% are
put operations. The workload is measured after loading
50GB of data (500M write operations). The latency slow-
down of Basic over NoCompaction is presented in Figure 10.
Here we also experiment with different pipeline sizes (pa-
rameter S). With only two segments in the pipeline (S = 2)
the search for each key is a bit faster than with a longer
pipeline (S = 5). We can see that the slowdown for the
short pipeline is negligible – up to 3%. When the pipeline
may grow to five segments, the performance gap slightly in-
creases to 2% − 8%. These results resemble the SSD reads
slowdown.



Table 2: Number of flushes and compactions, measured for NoCompaction vs Accordion policies, for the Zipf
key distribution.

Policy #flushes, SSD #compactions, SSD #flushes, HDD #compactions, HDD
NoCompaction 1468 524 1504 548

Basic 1224 355 1210 443
Adaptive (R=0.5) 922 309 879 316
Adaptive (R=0.35) 754 261 711 248
Adaptive (R=0.2) 631 209 630 216

(a) SSD (b) HDD

Figure 6: Bytes written by flushes and compactions, measured for NoCompaction vs Accordion policies, for
the Zipf key distribution. The Adaptive policy provides double-digit savings for disk I/O.

Figure 7: Cumulative GC time vs write throughput,
measured on SSD machines for multiple Accordion
policies and configurations, for the Zipf key distri-
bution. Each data point depicts the throughput vs
GC time of one experiment. Both axes are in log-log
scale. The graph shows a clear negative correlation
between the two metrics.

4.2.4 Parameter Tuning
One of the main sources of memory management overhead

is the skiplist data structure used to index the active mem-
ory segment. Not only is it bigger in size compared to a flat
index, it is also fragmented whereas a static index is stored
in a consecutive block of memory. Therefore, flat storage in-
curs smaller overhead in terms of allocation, GC, and cache
misses. We first tune the size of this data structure.

We evaluate the Basic policy with different bounds on
the active segment fraction: A = 0.25, 0.1, 0.05, and 0.02.
NoCompaction has no static memory segments, hence its
throughput is designated with a single point A = 1. We
measure throughput in a write-only Zipf workload, on SSD,
for the four values of A, and with a pipeline size S = 2. The
throughput of all five runs for each segment size are depicted
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Figure 8: Throughput speedup when using flat (un-
serialized) and serialized segments allocated on
MSLAB, off-heap and on-heap.

in Figure 11. The store scales as the active segment memory
fraction decreases.

The next parameter is the pipeline size. When A is less
than 10%, it is clear that merging the active segment into
the much bigger static data structure over and over again
can be inefficient, as it creates a new index and releases
the old one. The alternative is to batch multiple segments
(S > 1) in the pipeline before merging them into a single
segment. This throttles the index creation rate. On the flip
side, the read APIs must scan all the segments, which de-
grades their performance. Figure 12 depicts the write-only
throughput results as a function of the number of segments
in the pipeline. The peak throughput is achieved with S = 5
on SSD and S = 4 on HDD. In Figure 10 above, we observed
the effect of the parameter S on read performance – we saw
that the gap in scan latency between S = 5 and S = 1 is at
most 5%.

Parameter Tuning for Eager With the preferred active
segment size chosen for Basic (A = 0.02), Eager performs
poorly since compacting the data so frequently is inefficient.
Figure 13 shows that when the active segment is much bigger
(A = 0.25), Eager performs better, and outperforms the



(a) SSD (b) HDD

Figure 9: Read latency speedup (respectively, slowdown) of Basic and Adaptive versus NoCompaction, under
high write contention. Latencies are broken down by percentile. In HDD systems, Adaptive delivers up to
40% tail latency reduction.
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Figure 11: Tuning of the active segment memory frac-
tion, A, for the Basic policy, with S = 2, Zipf distri-
bution on SSD. Five experiments are conducted for
each A. The write throughput is higher for small
values of A.

baseline by 20%. We also discovered that the write volume
for Eager is roughly the same in these two settings, whereas
Basic’s write volume increases with A; (these results are
not shown). Since Adaptive is always superior to Eager, we
excluded Eager from the experiments reported above.

5. RELATED WORK
The basis for LSM data structures is the logarithmic method

[21]. It was initially proposed as a way to efficiently trans-
form static search structures into dynamic ones. A binomial
list structure stored a sequence of sorted arrays, called runs
each of size of power of two. Inserting an element triggers a
cascaded series of merge-sorting of adjacent runs. Searching

an element is done by applying a binary search on the runs
starting with the smallest run until the element is found.
AlphaSort [30] further optimizes a sort algorithm by taking
advantage of the entire memory hierarchy (from registers to
disk); each run fits into the size of one level in the hierarchy.

These methods inspired the original work on LSM-trees [31]
and its variant for multi-versioned data stores [29].

Because compaction frequency and efficiency has a signifi-
cant impact on LSM store performance and disk wear, many
previous works have focused on tuning compaction parame-
ters and scheduling [6, 14, 17, 18, 32] or reducing their cost
via more efficient on-disk organization [28]. However, these
works focus on disk compactions, which deal with data after
it has been flushed to disk. We are not aware of any previous
work that added in-memory compactions to LSM stores.

Some previous works have focused on other in-memory
optimizations. cLSM [25] focused on scaling LSM stores
on multi-core hardware by adding lightweight synchroniza-
tion to LevelDB. Accordion, on the other hand, is based on
HBase, which already uses a concurrent in-memory skiplist;
improving concurrency in the line of cLSM is orthogonal to
our contribution.

Facebook’s RocksDB [14] is the state-of-the-art imple-
mentation of a key-value store. All writes to RocksDB
are first inserted into an in-memory active segment (called
memtable). Once the active segment is full, a new one is
created and the old one becomes immutable. At any point
in time there is exactly one active segment and zero or more
immutable segments [15]. Unlike Accordion immutable seg-
ments take the same form of mutable segments. Namely,
there is no effort done to flatten the layout of the indices of
immutable segments or to eliminate redundant data versions
in any way while it is in-memory.

Similarly to Accordion, the authors of FloDB [20] also
observed that using large skiplists is detrimental to LSM
store performance, and so FloDB also partitions the memory
component. However, rather than using a small skiplist and
large flat segments as Accordion does, FloDB uses a small
hash table and a large skiplist. Put operations inserting
data to the small hash table are much faster than insertions
to the large skiplist, and the latter are batched and inserted
via multi-put operations that amortize the cost of the slow
skiplist access. Unlike Accordion, FloDB does not reduce
the memory footprint by either flattening or compaction.



(a) SSD (b) HDD

Figure 12: Tuning the pipeline size bound, S, for the Basic policy. Five experiments are conducted for each S.

Figure 13: Throughput (op/sec): Eager versus Basic
in different settings.

LSM-trie [35] is motivated by the prevalence of small ob-
jects in industrial NoSQL workloads. Like us, they observed
that skiplists induce high overhead when used to manage
many small objects. They suggest to replace the LSM store
architecture with an LSM trie, which is based on hashing
instead of ordering and thus eliminates the memory for in-
dexing. This data structure is much faster, but only for
small values, and, more importantly, does not support range
queries.

6. DISCUSSION
While disk compactions in LSM stores have gotten a lot of

attention, their in-memory organization was, by and large,
ignored. In this work, we showed that applying the LSM
principles also to RAM can significantly improve perfor-
mance and reduce disk wear. We presented Accordion, a
new memory organization for LSM stores, which employs in-
memory flushes and compaction to reduce the LSM store’s
memory footprint and improve the efficiency of memory
management and access. We integrated Accordion in Apache
HBase following extensive testing. It is available in HBase
2.0 and up.

In this paper, we evaluated Accordion with different stor-
age technologies (HDD and SSD) and various compaction
policies, leading to some interesting insights and surprises:

Flattening and active component size We showed
that flattening the in-memory index reduces the memory
management overhead as well as the frequency of disk writes,

thus improving performance and also reducing disk wear-
out. Originally, we expected an active segment (skiplist)
comprising 10–20% of the memory store to be effective, and
anticipated that smaller active components would result in
excessive flush and compaction overhead. Surprisingly, we
found that performance is improved by using a much smaller
active component, taking up only 2% of the memory store.
This is due in part to the fact that our workload is com-
prised of small objects – which are common in production
workloads [35] – where the indexing overhead is substantial.

Impact of memory management on write through-
put We showed that the write volume can be further re-
duced, particularly in production-like self-similar key access
distributions, by merging memory-resident data, namely,
eliminating redundant objects. We expected this reduction
in write volume to also improve performance. Surprisingly,
we found that disk I/O was not a principal bottleneck, even
on HDD. In fact, write throughput is strongly correlated
with GC time, regardless of the write volume.

Cost of redundant data elimination We expected re-
dundant data elimination to favorably affect performance,
since it frees up memory and reduces the write volume. This
has led us to develop Eager, an aggressive policy that fre-
quently performs in-memory data merges. Surprisingly, this
proved detrimental for performance. The cost of the Eager
policy was exacerbated by the fact that we benefitted from
a significantly smaller active component than originally ex-
pected (as noted above), where it literally could not keep
up with the in-memory flush rate. This led us to develop
a new policy, Adaptive, which heuristically decides when to
perform data merges based on an estimate of the expected
yield. While Adaptive does not improve performance com-
pared to the Basic policy, which merges only indices and not
data, it does reduce the write volume, which is particularly
important for longevity of SSD drives.

Deployment recommendations Following the set of ex-
periments we ran, we can glean some recommendations for
selecting policies and parameter values. The recommended
compaction policy is Adaptive, which offers the best perfor-
mance vs disk-wear tradeoff. When running without MSLAB
(i.e., with a flat index), an active segment size of A = 0.02
offered the best performance in all settings we experimented
with, though bigger values of A might be most appropriate
in settings with big values (and hence lower meta-data-to-



data ratios). When using MSLAB allocation, it is wasteful
to use such a small active segment, because an entire chunk
is allocated to it, and so we recommend using A = 0.1.
Assuming the workload is skewed (as production workloads
usually are), we recommend using a fairly aggressive com-
paction threshold R = 0.2. If the workload is more uni-
formly distributed or if write throughput is more crucial
than write amplification, then one can increase the value R
up to 0.5 or even higher to match the throughput of Ba-
sic. The pipeline size S induces a tradeoff between read
and write performance. If the workload is write-intensive
then we recommend using S = 5, and if the workload is
read-oriented S = 2 is better. We note that most of the rec-
ommendations here are set as default values in the coming
HBase 2.0 release.
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