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Abstract—It is becoming increasingly common for organiza-
tions to collect very large amounts of data over time, and to need
to detect unusual or anomalous time series. For example, Yahoo
has banks of mail servers that are monitored over time. Many
measurements on server performance are collected every hour
for each of thousands of servers. We wish to identify servers that
are behaving unusually.

We compute a vector of features on each time series, mea-
suring characteristics of the series. The features may include lag
correlation, strength of seasonality, spectral entropy, etc. Then we
use a principal component decomposition on the features, and use
various bivariate outlier detection methods applied to the first two
principal components. This enables the most unusual series, based
on their feature vectors, to be identified. The bivariate outlier
detection methods used are based on highest density regions and
α-hulls.

Keywords—Feature Space, Multivariate Anomaly Detection,
Outliers, Time Series Characteristics

I. INTRODUCTION

In the past decade a lot of work has been done on finding
the most similar time series efficiently [23], [14]. In this paper
we focus on finding the least similar time series in a large set.
We shall refer to such time series as unusual or anomalous.
Figure I gives a visual motivation for our approach. Each graph
in the left column shows a collection of 100 time series, two
of which are outliers having an abnormal trend or seasonality.
The second column shows the first two principal components
which we use to identify unusual time series. Some unusual
time series are not easy to identify (e.g., seasonality anomalies
in Figure I); for this reason, a robust, accurate and automated
solution is critical.

An important motivation for efficiently finding anomalous
time series comes from large internet companies. At such
companies, thousands of servers power user services providing
an uninterrupted and secure user experience. It is therefore
critical to monitor the server metrics (e.g., latency, cpu),
represented by time series, for any unusual behavior.

We are interested in the time series that are anomalous
relative to the other time series in the same cluster, or more
generally, in the same set. This type of anomaly detection
is different from univariate anomaly detection or even from
a multivariate point anomaly detection [6] because we are
interested in identifying entire time series that are behaving
unusually in the context of other metrics. Early detection of
these anomalous time series is critical for taking preemptive
action to protect users and provide a better user-experience.
The solution presented in this paper has been deployed at scale

Fig. 1. Different types of anomalies and corresponding first two principal
components which our method uses for unusual time series detection. These
types of anomalous time series may be due to an abnormal server or a malicious
user.

within Yahoo and the open-source version of the proposed
method is released [9] as an R package [18]. As shown in
Section IV, the proposed method has impressive performance
for a wide variety of anomalies present in the time series,
making it applicable to other use-cases such as identifying
anomalous users, data-base transactions, retail sales and many
others.

We make three fundamental contributions. First, we intro-
duce a novel and accurate method of using PCA with α-convex
hulls for finding anomalous time series. Second we perform
a study of possible features that are useful for the types of
time series dynamics seen in web-traffic time series. Lastly
we perform experiments on both synthetic and real world data
and demonstrate the usefulness and wide applicability of our
method to finding interesting time series in a collection of other
time series.

In Section II we present our approach that uses PCA and
α-convex hulls. In Section III we look at the features used
for explaining the variance in different scenarios. Experiments
of the method are described in Section IV. Demonstration
is described in Section V. Related work and conclusions are
presented in Sections VI and VII respectively.



Fig. 2. Scree plots showing that on our real dataset, a significant proportion of the variation can be captured using the first three to five components. For
unusual time series detection we found that the first 2 components are sufficient.

II. APPROACH

We first extract n features (see Section III) from m time
series. We then use Principal Component Analysis (PCA) (sim-
ilar to [23]) to identify the patterns (i.e., principal components).
The first two principal components (PCs) are then selected and
a two dimensional outlier detection algorithm is used to find
the top k ∈ m outliers.

PCA is a tool for dimension reduction in high dimensional
data. A principal component is a combination of the original
variables after a linear transformation. For example the first
principal component captures the maximum variation in the
rows of the m× n matrix. More formally, the first principal
component c1 is given by c1 = arg max||c||=1||yc||. Therefore,
loosely speaking the first k principal components capture the
k most prevalent patterns in the data.

Figure II shows the fraction of the variance captured by the
first k principal components from real time series. We found that
using the first two principal components was sufficient for our
use-cases. To find anomalies in the first two PCs we use a multi-
dimensional outlier detection algorithm. We have implemented
a density-based and an α-hull based multi-dimensional outlier
detection algorithms.

The density based multi-dimensional anomaly detection
algorithm [7] finds points in the first two principal components
with lowest density. The α-hull method [17] is a generalization
of the convex hull [6] which is a bounding region of a point set.
The α parameter in the α-hull method defines a generalized disk
of radius α. When α is sufficiently large, the α-hull method is
equivalent to the convex hull. Given α, an edge of the α-shape
is drawn between two members of the finite point set if there
exists a generalized disk of radius α containing the entire point
set and the two points lie on its boundary.

III. FEATURES

We now describe the time series features we use in the
PCA. While we focus on our use-case of identifying anomalous
servers in a large internet company, we attempt to make our
approach general and applicable to other use-cases where
finding anomalous time series is critical.

The features identified should capture the global information
of the time series. The features identified in our research add to
an already existing set of well established features that describe
time series [4] including measures of trend, seasonality, and

serial correlation [22] and spectral entropy [5]. Some of features
have been specifically selected to address our use-case. For
example we divide a series into blocks of 24 observations
to remove any daily seasonality. Then the variances of each
block are computed and the variance of the variances across
blocks measures the “lumpiness” of the series. Some of our
features rely on a robust STL decomposition [3]. For example,
the size and location of the peaks and troughs in the seasonal
component are used, and the spikiness feature is the variance
of the leave-one-out variances of the remainder component.
Other features measure structural changes over time. The “level
shift” is defined as the maximum difference in mean between
consecutive blocks of 24 observations, “variance change” is
computed similarly using variances, and the Kullback-Leibler
(KL) score is the maximum difference in KL divergence
(measured using kernel density estimation) between consecutive
blocks of 48 observations. “Flat spots” are computed by dividing
the sample space of a time series into ten equal-sized intervals,
and computing the maximum run length within any single
interval. Finally, “crossing points” are defined as the number
of times a time series crosses the mean line.

A more detailed look at the features will be presented in
the longer version of our paper.

Feature Description

Mean Mean.
Var Variance.
ACF1 First order of autocorrelation.
Trend Strength of trend.
Linearity Strength of linearity.
Curvature Strength of curvature
Season Strength of seasonality.
Peak Strength of peaks.
Trough Strength of trough.
Entropy Spectral entropy.
Lumpiness Changing variance in remainder.
Spikiness Strength of spikiness
Lshift Level shift using rolling window.
Vchange Variance change.
Fspots Flat spots using disretization.
Cpoints The number of crossing points.
KLscore Kullback-Leibler score.
Change.idx Index of the maximum KL score.

TABLE I. SUMMARY OF FEATURES USED FOR DETECTING UNUSUAL
TIME SERIES.



Baseline Method Description

Baseline 1 Computes Mean Absolute Difference
between time series.

Baseline 2 Computes similarity between time se-
ries using discrete wavelet transform
(DWT) [10].

Baseline 3 Uses PCA to extract raw time series fea-
tures and uses K-Means for clustering.
The time series in the smallest cluster
are labeled as outliers [20].

TABLE II. SUMMARY OF THE BASELINE METHOD.

IV. EXPERIMENTS

We now evaluate the effectiveness of our anomaly detection
method using real-world and synthetic data comprising normal
and anomalous time series. Our goal is to detect anomalous
time series accurately.

The real dataset comes from Yahoo and represents the
various server metrics (e.g., memory usage, latency, cpu). The
unusual time series in the real dataset are based on a malicious
activity, new feature deployment or a traffic shift. The synthetic
dataset was generated by varying various time series parameters
such as the trend, seasonality and noise. Both the synthetic
and real datasets contain approximately 1500 time series with
labeled anomalies.

A. Overall Detection Accuracy

Here we evaluate the average performance of our method
relative to the baseline methods. Recall that our approach first
extracts the two most significant principal components (PC)s
from all time series and then determines the outliers in the
new 2D “feature space”. For PC extraction, we have tested the
regular PCA and Robust PCA (RPCA). For multidimensional
outlier detection on the PC space we show results for the
density-based method (HDR) and for the α-hull method.

The baselines are described in Table II. Because our method
has no direct competitor, we use time series similarity and
clustering techniques as baselines to detect unusual time series.
We label a time series as unusual if it has a low average
similarity score or it belongs to the smallest cluster.

For this experiment both real and synthetic datasets were
used. For the synthetic dataset, 10 sets of time series were
created. Each set consists of 1500 time series, 5 of which were
creating with unusual features (e.g., unusually high seasonality).
All methods were evaluated in terms of the average accuracy =
#correct
#total across both real and synthetic datasets.

Figure 3 shows that our PCA + α-hull approach performs
the best. While it is not surprising that our technique out-
performed the baselines because we use a well-researched
feature-space, it is surprising that the Robust PCA method did
not perform well. This, however, can be explained by looking
at the optimization equation of Robust PCA [2] which ignores
outliers thereby potentially missing the principal component
that explains the variance better.

Fig. 3. Average accuracy of our method compared to baseline approaches.

Fig. 4. Scalability performance

B. Performance

Here we evaluate the performance of our algorithms com-
pared to the baseline methods. The performance is measured in
seconds as the number of total time series increases. Note that
the number of unusual time series also increases proportionally
to constitute roughly 2% of all time series. We can observe
from Figure 4 that our approach performs favorably compared
to others. Note that we were not able to run Baseline method
#2 due to extremely slow performance above 100 time series
therefore we do not include it in the comparison. Also note
that the feature extraction and the anomaly detection of the
PCA + α-hull increases only slightly as the number of time
series is increased by an order of magnitude.

V. DEMONSTRATION DESCRIPTION

The demonstration will be organized in two phases: (i)
a brief introduction, and (ii) a “hands-on” phase. In (i), the
main features of the Anomalous package will be explained



Fig. 5. A sample UI that uses the Anomalous package. By dragging the slider, the conference participant is able to filter out less ‘interesting’ time-series and
focus on only a few important metrics (out of thousands or millions of time-series) that may have caused a server outage, loss of data or other anomaly.

and the system interface shown in Figure V that uses the
Anomalous package to filter the “uninteresting” time-series will
be described. In the second part of the demo the public is invited
to directly interact with the system and test its capabilities by
visually inspecting the results produced by the package on
boh synthetic and real [15] data. Specifically, the conference
participant will use the Anomalous package to rank the time-
series by how “interesting” they are using the slider shown in
Figure V thereby focusing on only a few (instead of thousands
or millions) potentially important series.

VI. RELATED WORK

While our approach of identifying entire anomalous time
series is novel, there are some parallels with existing work.
For example authors in [11], [12], [13], [1] look at unusual
subsequences within a single time series. PCA has also been
used for detecting anomalous functions in a sample of functions
[8], and for detecting univariate anomalies by [19], [21]. In
addition to anomaly detection, PCA has been employed as a
similarity measure used in clustering [23], [14]. Authors in
[16] use PCA for a multi-dimensional visualization of a large
collection of time series. None of the above methods, however,
address our problem of finding unusual time series in a large
collection of time series.

VII. CONCLUSION

We propose using Principal Component Analysis (PCA)
together with multi-dimensional anomaly detection to identify
unusual time series in a large collections of time series.
Our method is robust and accurate as demonstrated by the
experiments over synthetic and real data from Yahoo. Our
approach achieves a detection accuracy of over 80% (compared
to 42% for baseline methods) and requires less than 0.5 seconds
to process 1000 time series which is at least 3x faster than
baseline algorithms. More experiments such as the effect on
performance as the number of principle components used by
the outlier detection method increases are to be presented in our
full paper. Our method requires no a priori labeling or tuning of
parameters other than the user-acceptable sensitivity threshold.
Our method incorporates thoughtful selection of features that
measure the types of anomalous behavior likely to occur in the
time series collection. The presented approach is open-sourced
[9] and is already deployed at scale within Yahoo.
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