
E-commerce in Your Inbox:
Product Recommendations at Scale

Mihajlo Grbovic, Vladan Radosavljevic,
Nemanja Djuric, Narayan Bhamidipati

Yahoo Labs
701 First Avenue, Sunnyvale, USA
{mihajlo, vladan, nemanja,
narayanb}@yahoo-inc.com

Jaikit Savla, Varun Bhagwan,
Doug Sharp

Yahoo, Inc.
701 First Avenue, Sunnyvale, USA

{jaikit, vbhagwan,
dsharp}@yahoo-inc.com

ABSTRACT
In recent years online advertising has become increasingly
ubiquitous and effective. Advertisements shown to visitors
fund sites and apps that publish digital content, manage
social networks, and operate e-mail services. Given such
large variety of internet resources, determining an appropri-
ate type of advertising for a given platform has become crit-
ical to financial success. Native advertisements, namely ads
that are similar in look and feel to content, have had great
success in news and social feeds. However, to date there has
not been a winning formula for ads in e-mail clients. In this
paper we describe a system that leverages user purchase his-
tory determined from e-mail receipts to deliver highly per-
sonalized product ads to Yahoo Mail users. We propose
to use a novel neural language-based algorithm specifically
tailored for delivering effective product recommendations,
which was evaluated against baselines that included show-
ing popular products and products predicted based on co-
occurrence. We conducted rigorous offline testing using a
large-scale product purchase data set, covering purchases of
more than 29 million users from 172 e-commerce websites.
Ads in the form of product recommendations were success-
fully tested on online traffic, where we observed a steady
9% lift in click-through rates over other ad formats in mail,
as well as comparable lift in conversion rates. Following
successful tests, the system was launched into production
during the holiday season of 2014.

Categories and Subject Descriptors
H.2.8 [Database applications]: Data Mining

Keywords
Data mining; computational advertising; audience modeling

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
KDD ’15, August 10-13, 2015, Sydney, NSW, Australia
c© 2015 ACM. ISBN 978-1-4503-3664-2/15/08...$15.00

DOI: http://dx.doi.org/10.1145/2783258.2788627.

1. INTRODUCTION
Hundreds of millions of people around the world visit their

e-mail inboxes daily, mostly to communicate with their con-
tacts, although a significant fraction of time is spent check-
ing utility bills, reading newsletters, and tracking purchases.
To monetize this overwhelming amount of traffic, e-mail
clients typically show display ads in a form of images along-
side native e-mail content. Convincing users to exit the “e-
mail mode”, characterized by a relentless focus on the task of
dealing with their mail, in order to enter a mode where they
are willing to click on ads is a challenging task. Effective
personalization and targeting [11], where the goal is to find
the best matching ads to be displayed for each individual
user, is essential to tackling this problem, as ads need to be
highly relevant to overcome user’s inclination to focus nar-
rowly on the e-mail task. In addition to financial gains for
online businesses [26], proactively tailoring advertisements
to the tastes of each individual consumer also leads to an
improved user experience, and can help with increasing user
loyalty and retention [2].

Inbound e-mails are still insufficiently explored and ex-
ploited for the purposes of ad targeting, while arguably rep-
resenting a treasure trove of monetizable data. A recent
study [13] showed that only 10% of inbound volume rep-
resents human-generated e-mails. Furthermore, out of the
remaining 90% of traffic more than 22% represents e-mails
related to online shopping. Given that a significant percent-
age of overall traffic has commercial intent, a popular form
of targeted advertising is mail retargeting (MRT), where ad-
vertisers target users who previously received e-mails from
certain commercial web domains. These e-mails present a
strong signal useful for targeting campaigns, as they give a
broad picture about each customer’s interests and relation-
ship with commercial domains. A recent paper [14] proposed
to make use of this vast potential and presented a clustering
method to generate MRT rules, showing that such rules are
more accurate than the ones generated by human experts.

However, in order to go beyond MRT rules that utilize
only the fact that users and e-commerce sites communi-
cated, advertisers require more detailed data such as pur-
chased product name and price that are often part of e-mail
body. E-mail clients have been working with e-commerce
and travel domains to standardize how e-mails are format-
ted, resulting in schemas maintained by the schema.org com-

Figure 1: Product recommendations in Yahoo Mail

munity1. With more and more e-commerce sites using stan-
dard schemas, e-mail clients can provide more personalized
user notifications, such as package tracking2 and flight de-
tails3. In addition, e-mail receipt extraction brings mone-
tization opportunity through product advertising to users
based on their individual purchase history. Availability of
purchase data from multiple commercial e-mail domains puts
the e-mail provider in the unique position to be able to build
better recommendation systems than those based on any
one commercial e-mail domain alone. In particular, unlike
e-commerce websites that make recommendations of type:
“Customers who bought X also bought Y ”, e-mail providers
can make recommendations of type: “Customers who bought
X from vendor V1 also bought Y from vendor V2”, allowing
much more powerful and effective targeting solutions.

In this paper we tell the story of an end-to-end develop-
ment of product ads for Yahoo Mail. The effort included
developing a product-level purchase prediction algorithm,
capable of scaling to millions of users and products. To
this end, we propose an approach that embeds products into
real-valued, low-dimensional vector space using a neural lan-
guage model applied to a time series of user purchases. As a
result, products with similar contexts (i.e., their surround-
ing purchases) are mapped to vectors that are nearby in the
embedding space. To be able to make meaningful and di-
verse suggestions about the next product to be purchased,
we further cluster the product vectors and model transition
probabilities between clusters. The closest products in the
embedding space from the most probable clusters are used
to form final recommendations for a product.

The product prediction model was trained using a large-
scale purchase data set, comprising more than 280 million
purchases made by 29 million users, involving 2.1 million
unique products. The model was evaluated on a held-out
month, where we tested the effectiveness of recommenda-
tions in terms of yield rate. In addition, we evaluated sev-
eral baseline approaches, including showing popular prod-
ucts to all users, showing popular products in various user
groups (called cohorts, specified by user’s gender, age, and
location), as well as showing products that are historically
frequently purchased after the product a user most recently
bought. To mitigate the cold start problem, popular prod-
ucts in user’s cohort were used as back-fill recommendations
for users without earlier purchases.

1http://schema.org/email, accessed June 2015
2yahoomail.tumblr.com/post/107247385566/track-your-
packages-now-in-the-yahoo-mail-app, accessed June 2015
3venturebeat.com/2014/10/22/yahoo-mail-now-tells-you-
about-upcoming-flights-and-events, accessed June 2015

Empirical results show that the proposed product-level
model is able to more accurately predict purchases than
baseline approaches. In the experimental section we also
share results of bucket tests on live traffic, where we com-
pared the performance of the baselines in the same ad slot.
Our method substantially improves key business metrics,
measured in terms of clicks and conversions. Moreover, our
product-prediction technique was successfully implemented
at large scale, tested in live buckets, and finally launched in
production. The system is able to make near-real-time prod-
uct recommendations with latency of less than 200ms. In
Figure 1 we show an example of our product recommender,
where an offer from walmart.com is suggested after related
purchase was made on amazon.com (marked with red).

2. RELATED WORK
In this section we describe related work in mail-based ad-

vertising, as well as neural language models that motivated
our product recommendation approach.

2.1 Leveraging e-mail data in advertising
Web environment provides content publishers with a means

to track user behavior in much greater detail than in an of-
fline settings, including capturing user’s registered informa-
tion and activity logs of user’s clicks, page views, searches,
website visits, social activities, and interactions with ads.
This allows for targeting of users based on their behavior,
which is typically referred to as ad targeting [1]. With the
rise of big data applications and platforms, machine learning
approaches are heavily leveraged to automate the ad target-
ing process. Within the past several years, there has been
a plethora of research papers that explored different aspects
of online advertising, each with the goal of maximizing the
benefits for advertisers, content publishers, and users.

For any machine learning technique, features used to train
a model typically have a critical influence on the perfor-
mance of the deployed algorithm. Features derived from
user events collected by publishers are often used in predict-
ing the user’s propensity to click or purchase [9]. However,
these features represent only a weak proxy to what publish-
ers and advertisers are actually interested in, namely, user’s
purchase intent. On the other hand, commercial e-mails
in the form of promotions and purchase receipts convey a
strong, very direct purchase intent signal that can enable ad-
vertisers to reach a high-quality audience. According to the
Direct Marketing Association’s “National Client E-mail Re-
port”4, an e-mail user has been identified as having over 10%
more value than the average online customer. Despite these

4www.powerprodirect.com/statistics, accessed June 2015

encouraging facts, limited work has been done to analyze the
potential of features derived from commercial e-mails. A re-
cent work [14] was among the first attempts to investigate
the value of commercial e-mail data. The authors applied
Sparse Principal Component Analysis (SPCA) on the counts
of received e-mails in order to cluster commercial domains,
demonstrating significant promise of e-mail data source.

Outside of the e-mail domain, information about user’s
purchase history is extensively used by e-commerce websites
to recommend relevant products to their users [22]. Recom-
mendation systems predict which products a user will most
likely be interested in either by exploiting purchase behavior
of users with similar interests (referred to as collaborative
filtering [22]) or by using user’s historical interaction with
other products (i.e., context-based recommendation [29]).
Unlike these studies, we are not limited to the data from a
single website, as purchases extracted from e-mails enable us
to gather information from hundreds of different e-commerce
websites that can be exploited to learn better product pre-
dictions. To the best of our knowledge, this work represents
the first study that offers a comprehensive empirical analy-
sis and evaluation of product predictors using e-mail data of
such scale and nature.

2.2 Neural language models
In a number of Natural Language Processing (NLP) appli-

cations, including information retrieval, part-of-speech tag-
ging, chunking, and many others, specific objectives can all
be generalized to the task of assigning a probability value to
a sequence of words. To this end, language models have been
developed, defining a mathematical model to capture statis-
tical properties of words and the dependencies among them
[3, 20]. Traditionally, language model approaches represent
each word as a feature vector using a one-hot representation,
where a word vector has the same length as the size of a vo-
cabulary, and the position that corresponds to the observed
word is equal to 1, and 0 otherwise. However, this approach
often exhibits significant limitations in practical tasks, suf-
fering from high dimensionality of the problem and severe
data sparsity, resulting in suboptimal performance.

Neural language models have been proposed to address
these issues, inducing low-dimensional, distributed embed-
dings of words by means of neural networks [5, 8, 28]. Such
approaches take advantage of the word order in text docu-
ments, explicitly modeling the assumption that closer words
in the word sequence are statistically more dependent. His-
torically, inefficient training of the neural network-based mod-
els has been an obstacle to their wider applicability, given
that the vocabulary size may grow to several millions in
practical tasks. However, this issue has been successfully
addressed by recent advances in the field, particularly with
the development of highly scalable continuous bag-of-words
(CBOW) and skip-gram (SG) language models [23, 24] for
learning word representations. These powerful, efficient mod-
els have shown very promising results in capturing both syn-
tactic and semantic relationships between words in large-
scale text corpora, obtaining state-of-the-art results on a
plethora of NLP tasks. More recently, the concept of dis-
tributed representations has been extended beyond word
representations to sentences and paragraphs [10, 21], rela-
tional entities [6, 27], general text-based attributes [19], de-
scriptive text of images [18], nodes in graph structure [25],
and other applications.

…" …"pi"c$

pi$

pi"1$ pi+1$ pi+c$

purchases)of)user)un$))

Projec.on)

i1th)product)

Figure 2: prod2vec skip-gram model

3. PROPOSED APPROACH
In this section we describe the proposed methodology for

the task of product recommendations, which leverages in-
formation about prior purchases determined from e-mail re-
ceipts. To address this task we propose to learn represen-
tation of products in low-dimensional space from historical
logs using neural language models. Product recommenda-
tion can then be performed in the learned embedding space
through simple nearest neighbor search.

More specifically, given a set S of e-mail receipt logs ob-
tained from N users, where user’s log s = (e1, . . . , eM) ∈ S
is defined as an uninterupted sequence of M receipts, and
each e-mail receipt em = (pm1, pm2, . . . pmTm) consists of Tm

purchased products, our objective is to find D-dimensional
real-valued representation vp ∈ RD of each product p such
that similar products lie nearby in the vector space.

We propose several approaches for learning product rep-
resentations that address specifics of the recommendations
from e-mail receipts. We first propose prod2vec method that
considers all purchased products independently. We then
propose novel bagged-prod2vec method that takes into ac-
count that some products are listed as purchased together
in e-mail receipts, which results in better, more useful prod-
uct representations. Finally, we present product-to-product
and user-to-product recommendation models that make use
of the learned representations.

3.1 Low-dimensional product embeddings
prod2vec. The prod2vec model involves learning vec-

tor representations of products from e-mail receipt logs by
using a notion of a purchase sequence as a “sentence” and
products within the sequence as “words”, borrowing the ter-
minology from the NLP domain (see Figure 2 for graphical
representation of the model). More specifically, prod2vec
learns product representations using the skip-gram model
[24] by maximizing the objective function over the entire set
S of e-mail receipt logs, defined as follows

L =
∑
s∈S

∑
pi∈s

∑
−c≤j≤c,j 6=0

log P(pi+j |pi), (3.1)

where products from the same e-mail receipt are ordered ar-
bitrarily. Probability P(pi+j |pi) of observing a neighboring
product pi+j given the current product pi is defined using
the soft-max function,

P(pi+j |pi) =
exp(v>piv

′
pi+j

)∑P
p=1 exp(v>piv

′
p)
, (3.2)

where vp and v′p are the input and output vector repre-
sentations of product p, c is the length of the context for
product sequences, and P is the number of unique products
in the vocabulary. From equations (3.1) and (3.2) we see
that prod2vec models context of product sequence, where
products with similar contexts (i.e., with similar neighboring
purchases) will have similar vector representations. How-
ever, prod2vec does not explicitly take into account that
e-mail receipt may contain multiple products purchased at
the same time, which we address by introducing a bagged
version of prod2vec described below.

bagged-prod2vec. In order to account for the fact that
multiple products may be purchased at the same time, we
propose a modified skip-gram model that introduces a no-
tion of a shopping bag. As depicted in Figure 3, the model
operates at the level of e-mail receipts instead at the level
of products. Product vector representations are learned by
maximizing a modified objective function over e-mail se-
quences s, defined as follows

L =
∑
s∈S

∑
em∈s

∑
−n≤j≤n,j 6=0

∑
k=1,...,Tm

log P(em+j |pmk). (3.3)

Probability P(em+j |pmk) of observing products from neigh-
boring e-mail receipt em+j , em+j = (pm+j,1 . . . pm+j,Tm),
given the k-th product from m-th e-mail receipt reduces to
a product of probabilities P(em+j |pmk) = P(pm+j,1|pmk) ×
. . . × P(pm+j,Tm |pmk), each defined using soft-max (3.2).
Note that the third sum in (3.3) goes over receipts, so the
items from the same e-mail receipt do not predict each other
during training. In addition, in order to capture temporal
aspects of product purchases we propose to use the directed
language model, where as context we only use future prod-
ucts [12]. The modification allows us to learn product em-
beddings capable of predicting future purchases.

Learning. The models were optimized using stochastic
gradient ascent, suitable for large-scale problems. However,
computation of gradients ∇L in (3.1) and (3.3) are propor-
tional to the vocabulary size P , which is computationally
expensive in practical tasks as P could easily reach millions
of products. As an alternative, we used negative sampling
approach proposed in [24], which significantly reduces the
computational complexity.

3.2 Product-to-product predictive models
Having learned low-dimensional product representations,

we considered several possibilities for predicting the next
product to be purchased.

prod2vec-topK. Given a purchased product, the method
calculates cosine similarities to all other products in the vo-
cabulary and recommends the top K most similar products.

prod2vec-cluster. To be able to make more diverse rec-
ommendations, we considered grouping similar products into
clusters and recommending products from a cluster that is
related to the cluster of previously purchased product. We
applied K-means clustering algorithm implemented on the
top of Hadoop distributed system where we grouped prod-
ucts based on cosine similarity between their low-dimensional
representations. We assume that purchasing a product from
any of the C clusters after a purchase from cluster ci follows
a multinomial distribution Mu(θi1, θi2, . . . θiC), where θij is
the probability that a purchase from cluster ci is followed
by a purchase from cluster cj . In order to estimate parame-
ters θij , for each i and j, we adopted a maximum likelihood

…	 …	 p1m-‐b	

p1m	

p1m-‐1	 p1m+1	 p1m+b	

emails	 of	 user	 un	 	 	

Projec4on	

m-‐th	 email	

pKm	

…	

em-‐b	 em-‐1	 em+1	 em+b	

em	

…	 …	 p1m-‐b	

p1m	

p1m-‐1	 p1m+1	 p1m+b	

emails	 of	 user	 un	 	 	

Projec4on	

m-‐th	 email	

pKm	

…	

em-‐b	 em-‐1	 em+1	 em+b	

em	

Figure 3: bagged-prod2vec model updates

Projec'on	

…	 …	 un	 pi-‐c	

pi	

pi-‐1	 pi+1	 pi+c	

user	 purchases	 of	 user	 un	 	 	

Figure 4: User embeddings for user to product predictions

approach,

θ̂ij =
of times ci purchase was followed by cj

count of ci purchases
. (3.4)

In order to recommend a new product given a purchased
product p, we first identify which cluster p belongs to (e.g.,
p ∈ ci). Next, we rank all clusters cj , j = 1, . . . , C, by the
value of θij and consider the top ones as top-related clusters
to cluster ci. Finally, products from the top clusters are
sorted by their cosine similarity to p, and we use the top K
products as recommendations.

3.3 User-to-product predictive models
In addition to product-to-product predictions [16, 17],

most recommendation engines allow user-to-product predic-
tions as well [15, 30]. Recommendation for a user are typi-
cally made considering historical purchases and/or interests
inferred using other data sources such as user’s online be-
havior [15], social contacts [30], and others. In this section
we propose a novel approach to simultaneously learn vec-
tor representations of products and users such that, given
a user, recommendations can be performed by finding K
nearest products in the joint embedding space.

user2vec. The user2vec model simultaneously learns vec-
tor representations of products and users by considering
the user as a “global context”, motivated by paragraph2vec
algorithm [21]. The architecture of such model is illus-
trated in Figure 4. The training data set was derived from
user purchase sequences S, which comprised users un and
their purchased products ordered by the time of purchase,
un = (pn1, pn2, . . . pnUn), where Un denotes number of items
purchased by user un. During training, user vectors are
updated to predict the products from their e-mail receipts,
while product vectors are learned to predict other products
in their context. For simplicity of presentation and w.l.o.g.

in the following we present non-bagged version of the lan-
guage model, however we note that it is straightforward to
extend the presented methodology to use the bagged version.

More specifically, objective of user2vec is to maximize the
log-likelihood over the set S of all purchase sequences,

L =
∑
s∈S

(∑
un∈s

log P(un|pn1 : pnUn)

+
∑

pni∈un

log P(pni|pn,i−c : pn,i+c, un)
) (3.5)

where c is the length of the context for products in purchase
sequence of the n-th user. The probability P(pni|pn,i−c :
pn,i+c, un) is defined using a soft-max function,

P(pni|pn,i−c : pn,i+c, un) =
exp(v̄>v′pni

)∑V
p=1 exp(v̄>v′p)

, (3.6)

where v′pni
is the output vector representation of pni, and

v̄ is averaged vector representation of the product context
including corresponding un, defined as

v̄ =
1

2c+ 1
(vun +

∑
−c≤j≤c,j 6=0

vpn,i+j), (3.7)

where vp is the input vector representation of p. Similarly,
the probability P(un|pn1 : pnUn) is defined as

P(un|pn1 : pnUn) =
exp(v̄>n v′un

)∑V
p=1 exp(v̄>n v′p)

, (3.8)

where v′un
is the output vector representation of un, and v̄n

is averaged input vector representation of all the products
purchased by user un,

v̄n =
1

Un

Un∑
i=1

vpni . (3.9)

One of the main advantages of the user2vec model is that
the product recommendations are specifically tailored for
that user based on his purchase history. However, disadvan-
tage is that the model would need to be updated very fre-
quently. Unlike product-to-product recommendations, which
may be relevant for longer time periods, user-to-product rec-
ommendations need to change often to account for the most
recent user purchases.

4. EXPERIMENTS
The experimental section is organized as follows. We first

describe data set used in development of our product-to-
product and user-to-product predictors. Next we present
valuable insights regarding purchase behavior of different
age and gender groups in different US states. This informa-
tion can be leveraged to improve demo- and geo-targeting
of user groups. This is followed by a section on effectiveness
of recommendation of popular products in different user co-
horts, including age, gender, and US state. Finally, we show
comparative results of various baseline recommendation al-
gorithms. We conclude with the description of the system
implementation at a large scale and bucket results that pre-
ceded our product launch.

4.1 Data set
Our data sets included e-mail receipts sent to users who

voluntarily opted-in for such studies, where we anonymized

Age buckets
18-20 21-24 25-29 30-34 35-39 40-44 45-49 50-54 55-59 60-64 65+

P
e
r
c
e
n
t
a
g
e

Male users
Female users

(a) Percentage of purchasing
users among all online users

Age buckets
18-20 21-24 25-29 30-34 35-39 40-44 45-49 50-54 55-59 60-64 65+

A
v
e
r
a
g
e

p
r
o
d
u
c
t

p
r
i
c
e

0

5

10

15

20

25

30

35

40

45

Male users
Female users

(b) Average product price

Figure 5: Purchasing habits for different demographics

user IDs. Message bodies were analyzed by automated sys-
tems. Product names and prices were extracted from e-mail
messages using an in-house extraction tool.

Training data set collected for purposes of developing prod-
uct prediction models comprised of more than 280.7 million
purchases made by N = 29 million users from 172 commer-
cial websites. The product vocabulary included P = 2.1
million most frequently purchased products priced over $5.

More formally, data set Dp = {(un, sn), n = 1, ..., N}
was derived by forming e-mail receipt sequences sn for each
user un, along with their timestamps. Specifically, sn =
{(en1, tn1), . . . , (enMn , tnMn)}, where enm is a receipt com-
prising one or more purchased products, and tnm is receipt
timestamp. Predictions were evaluated on a held-out month
of user purchasesDts

p , formed in the same manner asDp. We
measured the effectiveness of recommendations using pre-
diction accuracy. In particular, we measured the number of
product purchases that were correctly predicted, divided by
the total number of purchases. For all models, the accuracy
was measured separately on each day, based on the recom-
mendations calculated using prior days. We set a daily bud-
get of distinct recommendations each algorithm is allowed to
make for a user to K = 20, based on an estimate of optimal
number of ads users can effectively perceive daily [7].

4.2 Insights from purchase data
To get deeper insights into behavior of online users based

on their demographic background and geographic location,
we segregated users into cohorts based on their age, gender,
and location, and looked at their purchasing habits. Such
information can be very valuable to marketers when consid-
ering how and where to spend their campaign budget. We
only considered users from the US, and computed statis-
tics per each state separately. First, we were interested in
differences between male and female shopping behavior for
different age ranges. In addition, we were interested in the
following aspects of purchasing behavior: 1) percentage of
online users who shop online; 2) average number of products
bought; 4) average spent per user; and 4) average price of a
bought item. Figures 5 and 6 illustrate the results.

In Figure 5 for each gender and age group we show the
percentage of online users who shop online, as well as the
average prices of bought items. Expectedly, we see that
male and female demographics exhibit different shopping
patterns. Throughout the different age buckets percent-
age of female shoppers is consistently higher than for males,
peaking in the 30-34 age range. On the other hand, per-
centage of male shoppers reaches its maximum in the 21-24

(a) ages 18-20 (b) ages 40-44 (c) ages 18-20 (d) ages 40-44

(e) ages 18-20 (f) ages 40-44 (g) ages 18-20 (h) ages 40-44

Figure 6: Purchasing behavior for different cohorts, dark color encodes higher values: (a, b) Percentage of shoppers among
online users; (c, d) Average number of purchases per user; (e, f) Average amount spent per user; (g, h) Average product price

bucket, and from there drops steadily. In addition, we ob-
serve that male users buy more expensive items on average.

Furthermore, in Figure 6 we show per-state results, where
darker color indicates higher values. Note that we only
show results for different locations and age ranges, as we
did not see significant differences between male and female
purchasing behavior across states. First, in Figures 6(a) and
6(b) we show the percent of online shoppers in each state,
for younger (18-20) and medium-age (40-44) populations,
where we can see there exist significant differences between
the states. In Figures 6(c) and 6(d) we show the average
number of purchased products per state. Here, for both age
buckets we see that the southern states purchase the least
number of items. However, there is a significant difference
between younger and older populations, as in northern states
younger populations purchase more products, while in the
northeast and the western states this holds true for the older
populations. If we take a look at Figures 6(e) and 6(f) where
we compare the average amount of money spent per capita,
we can observe similar patterns, where in states like Alaska
and North Dakota younger populations spend more money
than peers from other states, and for older populations states
with highest spending per user are California, Washington,
and again Alaska. Interestingly, users from Alaska are the
biggest spenders, irrespective of the age or metric used. Sim-
ilar holds when we consider average price of a purchased
item, shown in Figures 6(g) and 6(h).

4.3 Recommending popular products
In this section we evaluate predictive properties of popular

products. Recommending popular products to global popu-
lation is a common baseline due to its strong performance,
especially during holidays (e.g., Christmas, Thanksgiving).
Such recommendations are intuitive, easy to calculate and
implement, and may serve in a cold start scenarios for newly
registered users when we have limited information.

We considered how far back we need to look when calculat-
ing popularity and how long popular products stay relevant.

Lookahead days
1 3 7 15 30

A
c
c
u
r
a
c
y

(
%
)

Lookback of 5 days
Lookback of 10 days
Lookback of 20 days
Lookback of 30 days

Figure 7: Prediction accuracy and longevity of popular
products with different lookbacks

In Figure 7 we give results for popular products calculated in
the previous 5, 10, 20, and 30 days of training data Dp, eval-
uated on the first 1, 3, 7, 15, and 30 days of test data Dts

p . To
account for ever-changing user purchase tastes, the results
indicate that popular products need to be recalculated at
least every 3 days with lookback of at most 5 days.

Next, we evaluated the prediction accuracy of popular
products computed for different user cohorts, and compared
to the accuracy of globally popular products. In Figure 8
we compare accuracies of popular products in different user
cohorts, with the lookback fixed at 5 days. We can observe
that popular products in gender cohorts give bigger lift in
prediction accuracy than popular products in age or state
cohorts. Further, jointly considering age and gender when
calculating popular products outperforms the popular gen-
der products. Finally, including geographic dimension con-
tributes to further accuracy lift. Overall, the results indicate
that in the cold start scenario the best choice of which popu-
lar products to recommend are the ones from the user’s (age,

Lookahead days
1 3 7 15 30

A
c
c
u
r
a
c
y

(
%
)

Global
Gender
Age
Age + gender
State
State + age + gender

Figure 8: Prediction accuracy of popular products for dif-
ferent user cohorts

gender, location) cohort. The results also suggest that pop-
ular products should be recalculated often to avoid decrease
in accuracy with every passing day.

4.4 Recommending predicted products
In this section we experiment with recommending prod-

ucts to users based on neural language models described in
Section 3. Specifically, we compare the following algorithms:

1) prod2vec-topK was trained using data set Dp, where
product vectors were learned by maximizing log-likelihood
of observing other products from sequences s, as proposed in
(3.1). Recommendations for a given product pi were given
by selecting the top K most similar products based on the
cosine similarity in the resulting vector space.

2) bagged-prod2vec-topK was trained usingDp, where
product vectors were learned by maximizing log-likelihood
of observing other products from e-mail sequences s as pro-
posed in (3.3). Recommendations for a given product pi
were given by selecting the top K most similar products
based on the cosine similarity in the resulting vector space.

3) bagged-prod2vec-cluster was trained similarly to
the bagged-prod2vec model, followed by clustering the prod-
uct vectors into C clusters and calculating transition proba-
bilities between them. After identifying which cluster pi be-
longs to (e.g., pi ∈ ci), we rank all clusters by their transition
probabilities with respect to ci. Then, the products from top
clusters are sorted by cosine similarity to pi, where top Kc

from each cluster are used as recommendations (
∑
Kc =

K). Example predictions of bagged-prod2vec-cluster com-
pared to predictions of bagged-prod2vec are shown in Ta-
ble 2. It can be observed that predictions based on the
clustering approach are more diverse.

4) user2vec was trained using data set Dp where prod-
uct vectors and user vectors were learned by maximizing
log-likelihood proposed in (3.5) (see Figure 4). Recommen-
dations for a given user un were given by calculating cosine
similarity between the user vector un and all product vec-
tors, and retrieving the top K nearest products.

5) co-purchase. For each product pair (pi, pj) we cal-
culated frequency F(pi,pj), i = 1, . . . , P, j = 1, . . . , P , with
which product pj was purchased immediately after product
pi. Then, recommendations for a product pi were given by
sorting the frequencies F(pi,pj), j = 1, . . . , P , and retrieving
the top K products.

lookahead days
1 3 7 15 30

a
c
c
u
r
a
c
y

(
%
)

,=1
,=0.9
,=0.7
,=0.5

Lookahead days

Ac
cu

ra
cy

Figure 9: prod2vec accuracy with different decay values

Since user un may have multiple products purchased prior
to day td, separate predictions need to reach a consensus
in order to choose the best K products to be shown on
that day. To achieve this we propose time-decayed scor-
ing of recommendations, followed by choice of top K prod-
ucts with the highest score. More specifically, given user’s
products purchased prior to td along with their timestamps,
{(p1, t1), . . . (pUn , tUn)}, for each product we retrieve top K
recommendations along with their similarity scores, result-
ing in the set {(pj , simj), j = 1, . . . ,KUn}, where sim de-
notes cosine similarity. Next, we calculate a decayed score
for every recommended product,

dj = simj · α(td−ti), (4.1)

where (td − ti) is a difference in days between current day
td and the purchase time of product that led to recommen-
dation of pj , and α is a decay factor. Finally, the decayed
scores are sorted in descending order and the top K products
are chosen as recommendations for day td.

Training details. Neural language models were trained
using a machine with 96GB of RAM memory and 24 cores.
Dimensionality of the embedding space was set to d = 300,
context neighborhood size for all models was set to 5. Fi-
nally, we used 10 negative samples in each vector update.
Similarly to the approach in [24], most frequent products
and users were subsampled during training. To illustrate
the performance of the language models, in Table 1 we give
examples of product-to-product recommendations computed
using bagged-prod2vec, where we see that the neighboring
products are highly relevant to the query product (e.g., for
“despicable me” the model retrieved similar cartoons).

Evaluation details. Similarly to how popular product
accuracy was measured, we assumed a daily budget of K =
20 distinct product recommendations per user. Predictions
for day td are based on prior purchases from previous days,
and we did not consider updating predictions for day td using
purchases that happened during that day.

Results. In the first set of experiments we evaluated per-
formance of prod2vec for different values of decay factors. In
Figure 9 we show prediction accuracy on test data Dts

p when
looking 1, 3, 7, 15, and 30 days ahead. Initial prod2vec pre-
dictions were based on the last user purchase in the training
data set Dp. The results show that discounting of old pre-
dictions leads to improved recommendation accuracy, with
decay factor of α = 0.9 being an optimal choice.

Table 1: Examples of product recommendations made by the bagged-prod2vec model

despicable me first aid for the usmle step 1 disney frozen lunch napkins

monsters university usmle step 1 secrets 3e disneys frozen party 9 square lunchdinner plates
the croods first aid basic sciences 2e disneys frozen party 9oz hotcold cups
turbo usmle step 1 qbook disneys frozen party 7x7 square cakedessert plates
cloudy with a chance of meatballs brs physiology disneys frozen party printed plastic tablecover
hotel transylvania rapid review pathology with student consult disneys frozen party 7 square cakedessert plates
brave lippincotts microcards microbiology flash cards disney frozen beverage napkins birthday party supplies
the smurfs first aid cases for the usmle step 2 disney frozen 9 oz paper cups
wreckit ralph highyield neuroanatomy frozen invitation and thank you card
planes lange pharmacology flash cards third edition disneys frozen party treat bags

Table 2: Product recommendations for product cressi supernova dry snorkel

bagged-prod2vec-topK bagged-prod2vec-cluster cluster ID

jaws quick spit antifog 1 ounce cressi neoprene mask strap
cressi neoprene mask strap cressi frameless mask cluster 1
cressi frameless mask cressi scuba diving snorkeling freediving mask snorkel set
akona 2 mm neoprene low cut socks akona 2 mm neoprene low cut socks
tilos neoprene fin socks tilos neoprene fin socks cluster 2
cressi scuba diving snorkeling freediving mask snorkel set mares equator 2mm dive boots
mares cruise mesh duffle bag jaws quick spit antifog 1 ounce
us divers island dry snorkel aqua sphere kayenne goggle with clear lens clear black regular cluster 3
us divers trek travel fin aqua sphere kayenne goggle with clear lens black regular
us divers proflex ii diving fins nikon coolpix aw120 161 mp wi-fi and waterproof digital camera
mares cruise backpack mesh bag olympus stylus tg ihs digital camera with 5x optical zoom cluster 4
water gear fin socks nikon coolpix aw110 wi fi and waterproof digital camera with gps

Lookahead days
1 3 7 15 30

A
c
c
u
r
a
c
y

(
%
)

bag prod2vec clust
bag prod2vec
prod2vec
co-purchase
user2vec
popular s-a-g

Figure 10: Prediction accuracy of different algorithms

Next, we evaluate different product-to-product and user-
to-product methods and compared them to the popular prod-
ucts approach found in Figure 8 to perform the best, namely
recommending popular products computed separately for
each (state, age, gender) cohort. Results are summarized
in Figure 10. We can observe that all neural-based pre-
diction algorithms outperformed method that recommends
popular products. Further, even though user2vec model had
the best overall accuracy on day 1, its prediction power
quickly drops after 3 days. On the other hand, variants
of the prod2vec model did not exhibit such behavior, and
their performance remained steady across the first 7 days.
Of all prod2vec models, the bagged-prod2vec-cluster model
achieved the best performance, indicating that diversity in
predictions leads to better results. Finally, predictions based
on co-purchases did not perform as well as neural language
models, supporting the “don’t count, predict” claim from
[4] where the authors suggest that simple co-occurence ap-
proaches are suboptimal.

Table 3: Results from live A/B testing of product recom-
mendations on Yahoo Mail

Control Popular Predicted

Metric (5% traffic) (5% traffic) (5% traffic)

CTR - +8.33% +9.81 %
YR - +7.63 %

4.5 Bucket results
Following offline evaluation of different product prediction

methods, we conducted additional A/B testing experiments
on live Yahoo Mail traffic. We ran two buckets with two
different recommendation techniques, both on 5% of Yahoo
Mail users. In the first bucket, for users with prior purchases
the recommendations were based on the bagged-prod2vec-
cluster model, while for users without prior purchases they
were based on globally popular products. In the second
bucket all users were recommended globally popular prod-
ucts. For purposes of a fair bucket test, both models were
retrained and refreshed with the same frequency of 7 days.

Both test buckets were evaluated against a control bucket
in which products ads were replaced with standard ads from
Yahoo Ad serving platform. All three buckets had signifi-
cant amount of users with prior purchases. Evaluation was
done based on the click-through rate (CTR) computed as
CTR = #clicks

#impressions
. In particular, we measured the num-

ber of clicks on product ads that occurred after the targeted
recommendation, divided by the total number of shown (or
impressed) product ads. In the control bucket, we computed
the same metric for standard ads. For the two product ad
buckets we additionally measured the yield rate, calculated
as YR = #conversions

#impressions
, where conversion refers to an actual

purchase of the recommended product. Conversions were
attributed to impression for up to 48 hours since the time
users clicked or observed a product ad.

DAY
1 4 7 10 13 16

C
T
R

Popular

Predicted

Model Update

Model Update

Model Update

Model Update

Figure 11: CTR of predicted versus popular recommenda-
tions in live bucket test over time

The results are presented in Table 3. We can make sev-
eral observations. First, both popular and predicted bucket
showed better CTR numbers than the control bucket, indi-
cating that the users prefer product ads over standard ads.
Second, the prediction bucket achieved slightly better CTR
rates than the popular bucket. Finally, the prediction bucket
achieved significantly better YR than the popular bucket.
This indicates that many times users click on popular prod-
ucts out of curiosity and do not end up buying the product,
whereas clicks on targeted products lead to more purchases
as they better capture user interests. Overall, the presented
results strongly suggest benefits of the proposed approach
for the task of product recommendations.

In addition, in Figure 11 we show how CTR rates change
over time. Similarly to our offline experiments, it can be
observed that popular recommendations become stale much
faster than predicted recommendations, as indicated by the
steeper CTR drop. They are also more susceptible to novelty
bias following model updates, as seen by larger increase in
CTR. Another useful finding was that 7 day updates are not
sufficient, confirming findings from Figure 7.

5. SYSTEM DEPLOYMENT
In this section we cover the details on our system imple-

mentation that led to final product deployment.

5.1 Implementation details
Due to product requirements for near-real-time predic-

tions, we chose to use product-to-product recommendations,
with the bagged-prod2vec-cluster model. The model is up-
dated every 5 days with the most recent purchase data.
The product vectors are stored on Hadoop Distributed File
System (HDFS), and updated via training procedure im-
plemented on Hadoop5, where we heavily leverage parallel
processing with MapReduce. We form purchase sequences
using the newest purchased products extracted from e-mail
receipts, and incrementally update the product vectors in-
stead of training them from scratch.

Popular products were used as back-fill for users who do
not have prior purchase history. Following the experimen-
tal results, we recalculated popular products every 3 days,
with a lookback of 5 days. More specifically, we extracted

5https://hadoop.apache.org, accessed June 2015

100 most frequently purchased products for every state-age-
gender cohort, and showed them in randomized order to
users without purchase history.

We implemented a multi-tier architecture in order to pro-
ductionize product recommendation capability on Yahoo Mail.
For data storage we used a custom, high-performance dis-
tributed key-value store (similar to Cassandra6), which per-
sists user profiles and product-to-product prediction model.
The user profile store utilizes user identifier as a key and
stores multiple columns representing user prior purchases as
values. User profiles are updated hourly with new products,
extracted from e-mail receipts. Each purchase record per-
sists in memory with time-to-live (TTL) set to 60 days, after
which period it is discarded.

Product-to-product prediction model is stored in a sim-
ilar key-value store, where purchased product is used as a
key and values are multiple columns each representing pre-
dicted products ordered by score. Both user and product-to-
product stores are updated in batch without impacting real
traffic. Separate process performs all processing of querying
user purchases and asynchronously retrieves relevant pre-
dictions and offers. It then returns selected product ad
back to presentation process implemented in JavaScript and
HTML which renders it in the browser. The retrieval pro-
cess is configured such that it can fetch offers from multiple
e-commerce websites (affiliate partners). The system runs
with a service-level agreement of 500ms and can be improved
further by caching interactions with affiliate partners.

Given predictions for a certain user, once the user logs into
the e-mail client we show a new recommendation after every
user action, including clicking on folders, composing e-mail,
and searching the inbox. Recommendation are circled in the
order of decayed prediction score, as described in Section 4.4.
The product ads are implemented in the so-called“pencil”ad
position, just above the first e-mail in the inbox (Figure 1).

6. CONCLUSIONS AND FUTURE WORK
We presented the details of a large-scale product recom-

mendation framework that was launched on Yahoo Mail in
the form of product ads. We discussed the recommendation
methodology, as well as the high-level implementation de-
tails behind our system. To perform recommendations, we
described how we employed neural language models capa-
ble of learning product embeddings for product-to-product
predictions, as well as user embeddings for user-to-products
predictions. Several variants of the prediction models were
tested offline and the best candidate was chosen for an on-
line bucket test. Following the encouraging bucket test re-
sults, we launched the system in production. In our ongoing
work, we plan to utilize implicit feedback available through
ad views, ad clicks, and conversions to further improve the
performance of our product recommendation system.

7. REFERENCES
[1] A. Ahmed, Y. Low, M. Aly, V. Josifovski, and A. J.

Smola. Scalable distributed inference of dynamic user
interests for behavioral targeting. In KDD, pages
114–122, 2011.

[2] J. Alba, J. Lynch, B. Weitz, C. Janiszewski, R. Lutz,
A. Sawyer, and S. Wood. Interactive home shopping:

6http://cassandra.apache.org/, accessed June 2015

consumer, retailer, and manufacturer incentives to
participate in electronic marketplaces. The Journal of
Marketing, pages 38–53, 1997.

[3] R. Baeza-Yates, B. Ribeiro-Neto, et al. Modern
information retrieval, volume 463. ACM press New
York, 1999.

[4] M. Baroni, G. Dinu, and G. Kruszewski. DonÕt
count, predict! a systematic comparison of
context-counting vs. context-predicting semantic
vectors. In Proceedings of the 52nd Annual Meeting of
the Association for Computational Linguistics,
volume 1, pages 238–247, 2014.

[5] Y. Bengio, H. Schwenk, J.-S. Senécal, F. Morin, and
J.-L. Gauvain. Neural probabilistic language models.
In Innovations in Machine Learning, pages 137–186.
Springer, 2006.

[6] A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston,
and O. Yakhnenko. Translating embeddings for
modeling multi-relational data. In Advances in Neural
Information Processing Systems, pages 2787–2795,
2013.

[7] C.-H. Cho and H. J. Cheon. Why do people avoid
advertising on the internet? Journal of advertising,
33(4):89–97, 2004.

[8] R. Collobert, J. Weston, L. Bottou, M. Karlen,
K. Kavukcuoglu, and P. Kuksa. Natural language
processing (almost) from scratch. The Journal of
Machine Learning Research, 12:2493–2537, 2011.

[9] N. Djuric, V. Radosavljevic, M. Grbovic, and
N. Bhamidipati. Hidden conditional random fields
with distributed user embeddings for ad targeting. In
IEEE International Conference on Data Mining, Dec
2014.

[10] N. Djuric, H. Wu, V. Radosavljevic, M. Grbovic, and
N. Bhamidipati. Hierarchical neural language models
for joint representation of streaming documents and
their content. In International World Wide Web
Conference (WWW), 2015.

[11] D. Essex. Matchmaker, matchmaker. Communications
of the ACM, 52(5):16–17, 2009.

[12] M. Grbovic, N. Djuric, V. Radosavljevic, and
N. Bhamidipati. Search retargeting using directed
query embeddings. In International World Wide Web
Conference (WWW), 2015.

[13] M. Grbovic, G. Halawi, Z. Karnin, and Y. Maarek.
How many folders do you really need?: Classifying
email into a handful of categories. In Proceedings of
the 23rd ACM International Conference on
Conference on Information and Knowledge
Management, pages 869–878. ACM, 2014.

[14] M. Grbovic and S. Vucetic. Generating ad targeting
rules using sparse principal component analysis with
constraints. In international conference on World
Wide Web, pages 283–284, 2014.

[15] D. J. Hu, R. Hall, and J. Attenberg. Style in the long
tail: discovering unique interests with latent variable
models in large scale social e-commerce. In
Proceedings of the 20th ACM SIGKDD international

conference on Knowledge discovery and data mining,
pages 1640–1649. ACM, 2014.

[16] J. Katukuri, T. Konik, R. Mukherjee, and S. Kolay.
Recommending similar items in large-scale online
marketplaces. In Big Data (Big Data), 2014 IEEE
International Conference on, pages 868–876. IEEE,
2014.

[17] J. Katukuri, R. Mukherjee, and T. Konik. Large-scale
recommendations in a dynamic marketplace. In
Workshop on Large Scale Recommendation Systems at
RecSys, volume 13, 2013.

[18] R. Kiros, R. Zemel, and R. Salakhutdinov. Multimodal
neural language models. In Proceedings of the 31th
International Conference on Machine Learning, 2014.

[19] R. Kiros, R. S. Zemel, and R. Salakhutdinov. A
multiplicative model for learning distributed
text-based attribute representations. arXiv preprint
arXiv:1406.2710, 2014.

[20] V. Lavrenko and W. B. Croft. Relevance based
language models. In SIGIR, pages 120–127. ACM,
2001.

[21] Q. V. Le and T. Mikolov. Distributed representations
of sentences and documents. arXiv preprint
arXiv:1405.4053, 2014.

[22] G. Linden, B. Smith, and J. York. Amazon.com
recommendations: Item-to-item collaborative filtering.
IEEE Internet Computing, 7(1):76–80, Jan. 2003.

[23] T. Mikolov, K. Chen, G. Corrado, and J. Dean.
Efficient estimation of word representations in vector
space. arXiv preprint arXiv:1301.3781, 2013.

[24] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and
J. Dean. Distributed representations of words and
phrases and their compositionality. In NIPS, pages
3111–3119, 2013.

[25] B. Perozzi, R. Al-Rfou, and S. Skiena. Deepwalk:
Online learning of social representations. arXiv
preprint arXiv:1403.6652, 2014.

[26] D. Riecken. Personalized views of personalization.
Communications of the ACM, 43(8):27–28, 2000.

[27] R. Socher, D. Chen, C. D. Manning, and A. Ng.
Reasoning with neural tensor networks for knowledge
base completion. In Advances in Neural Information
Processing Systems, pages 926–934, 2013.

[28] J. Turian, L. Ratinov, and Y. Bengio. Word
representations: a simple and general method for
semi-supervised learning. In Proceedings of the 48th
Annual Meeting of the Association for Computational
Linguistics, pages 384–394. Association for
Computational Linguistics, 2010.

[29] Y. Zhang and M. Pennacchiotti. Predicting purchase
behaviors from social media. In WWW, pages
1521–1532, 2013.

[30] X. W. Zhao, Y. Guo, Y. He, H. Jiang, Y. Wu, and
X. Li. We know what you want to buy: a
demographic-based system for product
recommendation on microblogs. In Proceedings of the
20th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages
1935–1944. ACM, 2014.

	Introduction
	Related work
	Leveraging e-mail data in advertising
	Neural language models

	Proposed approach
	Low-dimensional product embeddings
	Product-to-product predictive models
	User-to-product predictive models

	Experiments
	Data set
	Insights from purchase data
	Recommending popular products
	Recommending predicted products
	Bucket results

	System Deployment
	Implementation details

	Conclusions and FUTURE WORK
	References

