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ABSTRACT

Mail extraction is a critical task whose objective is to extract valu-
able data from the content of mail messages. This task is key for
many types of applications including re-targeting, mail search, and
mail summarization, which utilize the important personal data
pieces in mail messages to achieve their objectives. We focus on
machine generated traffic, which comprises most of the Web mail
traffic today, and use its structured and large-scale repetitive na-
ture to devise a fully automated extraction method. Our solution
builds on an advanced structural clustering technique previously
presented by some of the authors of this work. The heart of our
solution is an offline process that leverages the structural mail-
specific characteristics of the clustering, and automatically creates
extraction rules that are later applied online for each new arriving
message. We provide of a full description of our process, which has
been productized in Yahoo mail backend. We complete our work
with large-scale experiments carried over real Yahoo mail traffic,
and evaluate the performance of our automatic extraction method.
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1 INTRODUCTION

During the last few years, there has been a surge of interest in
analyzing machine generated mail. Machine generated messages
are commonly created by scripts on behalf of commercial entities
or organizations, and comprises more than 90% of non-spam Web
mail traffic [2, 21]. There are numerous examples of such messages,
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including purchase receipts, travel reservations, events and social
notifications, and more.

Most of the work that has been done in this context utilizes
the special characteristics of this traffic. Arguably, the two main
characteristics of such messages are that they are highly-structured,
and that similar messages are sent at large scale across the users
population. The identical message structure and repetitive parts of
messages generated by the same script allow a dedicated analysis,
and enable the application of automated data mining and learning
methods at scale. Several purposes for such methods have been
presented, including mail classification [4, 21, 37], mail anonymiza-
tion [18], and mail extraction [4].

In this work, we focus on mail extraction, where the goal is
to extract valuable information from the body of mail messages.
More specifically, we concentrate on developing a fully automated
method for identifying and extracting valuable data parts from
machine generated traffic. Note that although machine generated
messages are created by scripts, they typically include personal
data pieces. These are usually the pieces of information we wish to
extract. Examples of such might be the item that was purchased,
its date of delivery, or the travel details in an itinerary.

Mail extraction is critical for many applications like re-targeting,
mail search, and mail summarization used by various user facing
features. For example, re-targeting can be optimized using the anal-
ysis of users interests based on their transactions; mail search can
be improved by properly indexing extracted data to enrich search
features, and mail summarization can be better performed after
identifying the important parts of messages.

The general task of data extraction has been a major challenge
in the Web domain, and many solutions that consider Web docu-
ments have been developed. However, these solutions either require
types of similarities to which mail messages do not conform (e.g.,
semantic or statistical term similarities [8-10, 23]), or, as they tend
to be rather generic, do not exploit valuable mail-specific charac-
teristics that can greatly improve the quality of extractions (e.g.,
compare with the Web pages structural methods [6, 14]). There are
also continuous efforts to formalize schemes for structured data on
the Internet, including web pages, mail messages and others. The
well-known schema.org defines a full hierarchy of data vocabulary
for different mail types (e.g., “FlightReservation”, “ParcelDelivery”)
with the goal of creating a standard that would be supported by
major services to power extensible experiences. Despite these ef-
forts, only a small part of mail traffic adheres to this schema!, and
thus, it does not provide sufficient coverage of the traffic.

Less than 1% of the mail clusters use a valuable schema type. The notion
of clusters for machine generated traffic is explained later on.
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Mail data extractions can be performed most efficiently at scale
when based on a clustering of the traffic, rather than on a single mes-
sage. The objective in clustering of mail traffic is to group together
messages with similar structure and intent, so that extraction rules
can be defined and applied for the entire cluster. Intuitively, such a
clustering aims to capture the scope of the generating scripts. Differ-
ent clustering techniques have been proposed in the context of mail,
starting from clusters based on the message header [2, 37] to more
advanced techniques based on the message structure [4, 18]. Some
of the authors of this work have recently introduced new struc-
tural clustering methods that can be conducted at different levels of
granularity, using strict or flexible matching constraints [4]. That
work focuses on clustering and considers the mail extraction task
as a primary use case. However, the extraction method employed
in that work is based on manually defined rules.

In the current work, we propose a fully-automated extraction
solution. The progress that was made in clustering machine gen-
erated traffic underlies this new process. We utilize the structural
clustering solution [4], and exploit its characteristics in the develop-
ment of our solution. The heart of our solution is a fully-automated
way for creation of extraction rules. The rules are generated in an
offline manner per cluster, and are applied online upon an arrival of
new mail messages. We present the complete solution, and analyze
its performance using both professional editorial evaluation, and an
offline extraction evaluation on a real large scale data-set of Yahoo
mail service. The editorial evaluation is used to assess the quality
of the extraction rules created automatically by our process, while
the large scale offline evaluation is used to estimate the quality
of the final extraction output. Using both types of evaluation, we
derive some insights on the strengths and challenges of information
extraction in the Web mail domain.

The rest of this paper is organized as follows. Section 2 covers
some related work in the context of information extraction. Sec-
tion 3 describes the automated mail extraction approach and the
main steps of the rules creation process. Section 4 presents our
system architecture as productized in Yahoo mail backend, along a
traffic analysis. In Section 5, we present our evaluation, focusing
on the travel domain, and considering the different phases of our
automatic extraction process. Finally, we conclude in Section 6.

2 RELATED WORK

Information extraction is a major research challenge at Web scale.
Traditional techniques range from source-centric, in which data is
extract from an explicit source (like a specific website), to web-
centric, where data is extracted from the entire Web [5, 11, 19, 20].
A web-centric approach is commonly confined to extracting simple
entities (such as tables and lists) as well as some relational data. This
approach finds it difficult to attach semantics to entities. As opposed,
a source-centric or domain-centric approach, which considers a
collection of sources, allows utilization of specific schemas to be
populated (e.g., restaurant recommendations), as well as supervision
at the domain level [7, 32]. In this sense, information extraction
adapted to machine-generated mail traffic is much closer to the
domain-centric approach, as it collects data according to domain-
specific types. The programs that extract information are called

extractors or wrappers, and the reader is referred to surveys [1, 12]
for further reading about these concepts.

The task of information extraction processes online documents
which are semi-structured and generated automatically by server-
side applications. As such, it usually applies machine learning and
pattern mining techniques to exploit the syntactical patterns or
layout structures of the template-based documents. In a sense, most
techniques seek to separate between the layout and the data. There
is an abundant amount of research on extraction techniques, where
some of the main ones build on Web page structure [3, 25, 26, 36],
pattern recognition [13], tree methods [16, 22], repetitive informa-
tion identification [33-35], vision techniques [27], and more. These
techniques often build on clustering of the underlying documents,
focusing mainly on HTML-based pages. Common approaches for
identifying document similarity are based on the semantic or statis-
tical term similarity of documents (see, e.g., [28] for an introduction
of related techniques), or on methods for document reduction and
canonical sequence representation [8, 10, 23]). Although machine-
generated emails are typically documents in rich HTML format,
they do not easily conform to the above types of similarity when
structural considerations (like the ones required for data extrac-
tion) are meaningful. Identifying document similarity based on its
structure has been given a lot of consideration in the past [6, 14, 31].
However, those techniques are not dedicated to the mail domain,
and therefore, do not exploit meaningful mail signals.

An important part of our automatic extraction process com-
prises of the identification and annotation of different information
parts. Example of such are names, places, products, and more. Gen-
erally, identification of entities in documents is known as name
entity recognition [30]. Some major methods in this field involve
databases and statistical models, while others use machine learn-
ing or linguistic grammar-based techniques in order to identify
entities using parts of speech. There are few papers that consider
entity recognition in the context of informal documents such as
mail messages, like the research on contacts information extrac-
tion [15], and the work of [29] that uses NLP methods to identify
names. These works are not targeted to the mail domain, nor to
machine-generated traffic. As a result, they do not make use of the
ensemble of documents as provided by the clustering of this traffic
and of the statistical power it provides. Our method allows treating
any set of entities that are present in such traffic using a modular
approach. This is partly achieved as our process is based on the
horizontal analysis of each cluster of messages, rather than on a
single message.

The only work we are aware of, which treats a similar problem
as ours, is the work of Zhang et al. [38] that considers the extraction
of structured data from emails. Our work can be seen as comple-
mentary to their work in several aspects. Zhang et al. [38] describes
a general approach for extracting and annotating product names. It
concentrates on the learning algorithm and optimization behind
the annotation process, rather than on the implementation details
and the deployment of the approach. For example, their extraction
process is based on abstracted entities (clusters and templates), but
specific details about their computation or level of abstraction are
not provided, making the approach irreproducible. One contribu-
tion of our work lies in the description of the complete solution,
which is based on a known notion of structural clustering. As part of



our solution, we precisely describe and analyze how the structural
characteristics of these cluster entities are processed and exploited
for the creation of extraction rules. Furthermore, in [38], a separate
learning model is computed per template, while in the current work,
we compute one generic model which works for the entire set of
clusters belonging to a specific category (e.g. travel, purchases, etc.).
Note that the number of clusters is already in the low millions
for travel-related domains. As scale is a crucial issue in a system
processing email traffic, this is yet another key difference between
the two works. This difference is also reflected in the traffic cov-
erage of the experiments; Zhang et al. [38] considers about 20K
messages (associated with 20 templates), while our work considers
10M messages (associated with 36K clusters). A final difference is
that Zhang et al. focuses on the purchases domain while ours take
the travel domain as an exemplary use case. These are indeed two
different important business-consumer classes. Both of them have
some support in all major Web mail services (e.g., the Bulk Senders
category in AOL mail, the semantic Bundles in Inbox for Gmail, and
the Smart Views in Yahoo mail).

3 THE MAIL EXTRACTION PROCESS

The mail extraction process comprises two parts, as presented in
Figure 1. The first part is an offline process during which extraction
rules are automatically created. The second part is an online process
where upon the arrival of a new message, the appropriate rules are
identified and applied, resulting in extracted information.
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Figure 1: Flow logic of automatic mail extraction process.

We focus on the automatic offline process.Our approach is mod-
ular, and can be applied to any class of mail messages such as travel,
social or finance. The steps of the process that require adaptation
to a specific class are mentioned along the section.

3.1 Preliminaries

An essential and first building block in our approach is a clustering
method that groups together machine generated emails having the
exact same structure. This method is known as x-clustering [18].
Without delving into technicalities, the method represents each
message as an ordered list of all the XPath expressions in its DOM
tree, and then applies a so-called Mail-Hash signature to that list.

This implies a clustering of messages according to their resulting
(structure-based) signature. The generated clusters are referred to
as XPath clusters, or x-clusters.

Importantly, this structure-based clustering enables us to easily
collect multiple (different) message instances that result from the
same generative script. We process and analyze those messages to
identify the concrete locations that hold information of interest, that
is, information to be extracted. Typically, this kind of information
is present in variable XPaths, which are XPaths whose values vary
between messages in the same cluster. Those variable data pieces
commonly hold the most valuable information of the message.
Xpaths that hold fixed information over the entire cluster are called
constant XPaths, and are typically of low value. Subsequently, we
define rules that can extract variable information and annotate it.
The resulting extraction rules are then used to extract data online,
as mentioned earlier. Specifically, once a message arrives to the
mail system, its x-cluster signature is computed, and the associated
extraction rules are retrieved and applied to the message.

3.2 Overview: Automatic Rules Creation

Given a large corpus of email messages collected over several (not
necessarily consecutive) days, our process begins by grouping to-
gether messages into x-clusters. Then, it processes each x-cluster
independently to create extraction rules per cluster. The process
applied to the x-clusters is described below.

Input & Output Given an x-cluster, we gather a random sample
of email messages that are associated with the cluster, namely, mes-
sages having the exact same structure. We require the sample size
to be sufficiently large, usually around several dozens of messages
(parameterized by a threshold I'), to allow effective and precise iden-
tification of variable data. Note that the difference between constant
and variable data is sometimes delicate and far from being absolute.
For example, there are sometimes variations in what we consider
constant data to account for identical message structure under dif-
ferent languages. This technical issue is of secondary importance,
and therefore, we neglect it from the current discussion.

It is instructive to represent the sample data as a table whose rows
correspond to different messages while its columns correspond to
different XPaths. Such a tabular representation is called an x-cluster
table, an example of which is presented in Table 1. Note that some
of the XPaths in this example are variable (e.g., XPath;, XPathy,
and XPathy), while others are constant (e.g., XPathy, XPaths, and
XPathg). In particular, note that XPaths that consist of both con-
stant and variable sub-parts (like, XPath; ) are regarded as variable.
Those mixed XPaths are usually the most challenging for defining
extraction rules. In the remainder of this work, we concentrate only
on extraction rules for variable XPaths.

As already noted, the output of the process are extraction rules
for the underlying x-cluster. Each extraction rule is associated with
some XPath of the x-cluster. At the most intuitive level, a rule
provides a description of the way to extract variable data pieces
from the XPath, and suggests an annotation for each of those pieces.
An annotation is chosen from a pre-defined set of information types
to be extracted, e.g., <passenger-name>, <confirmation-code>,
<date-depart>. Figure 2 shows an example of an extraction rule that
was generated for a specific XPath, based on a set of values collected



XPath1 XPathz XPath3 XPath4 XPath5 XPath6 XPath7
msg 1 | Thank you John!, | Below is... | Upcoming Trip: | 07/08/16 - Ontario AIR Confi... | ABC123
msg 2 | Thank you Arya!, | Below is... | Upcoming Trip: | 06/09/16 - New York AIR Confi... | Z5T8Q2
msg 3 | Thank you Khal!, | Below is... | Upcoming Trip: | 23/08/16 - Boston AIR Confi... | ER46T1
msg 4 | Thank you Lucy!, | Below is ... | Upcoming Trip: | 13/08/16 - Seattle AIR Confi... | 61FXC1

Table 1: An example of an input table for the rules creation process.

from different messages. In this case, constant (repeating) sub-parts
are identified, while variable sub-parts are given a placeholder and
annotation. The concrete way by which this rule can be utilized for
future extractions is a matter of implementation. One possibility
is to interpret this rule as a regular expression by replacing the
placeholders with regexes that can match the XPath values.

3.3 Step 1: Basic Rule Creation

Our first objective is to create a basic rule that identifies constant
and variable sub-parts within an XPath. We start by performing
a first round of annotations of the tokens in the sample set. This
first round is based on light annotations that are general and inde-
pendent of the context. For instance, we may use a date annotation
without a concrete contextual interpretation indicating that the
date corresponds to a flight arrival, package delivery, service ex-
piration, or else. Essentially, this views the set of annotations as
a two-level hierarchy in which first level annotations are general
(e.g., <date>), and second level annotations are refined (e.g, <date-
arrive> for a flight). By replacing tokens with annotations, we are
able to identify popular tokens that are part of variable XPaths, and
are not supposed to be considered constants. For example, for an
XPath with a large number of samples referring to SFO airport, the
token “SFO" would be annotated as <airport> and identified as
valuable, even if appearing in most of the samples.

The task of annotating tokens clearly depends on the set of sup-
ported annotations and the definition of the information that ought
to be extracted. Many techniques can be used here. Examples range
from brute-force dictionary search and regular expression patterns
matching, to more involved machine learning based classification
procedures. A dictionary comprises a set of words related to a spe-
cific subject. For instance, one can build a dictionary of personal
names. Given a dictionary and a term (token), we search the dictio-
nary, and replace any identified token with a respective annotation.
Consider the text “Hello Jack, Thank you for flying with
us!”. Using the dictionary method, this sentence will be annotated
as “Hello <name>, Thank you for flying with us!”. Similarly,
one can define regular expressions that identify annotations such as
date or time. For example, given the text “Departing at 9:00 AM
(PST)”, if we use time-related regexes, the sentence will be anno-
tated as “Departing at <time>”.In addition, it is likely one would
need build more involved classification procedures for complicated
annotation tasks such as identification of product names. The spe-
cific annotation types used for flights are specified in Table 3.

We note that a given technique will likely not be accurate enough
to identify all tokens in all sampled phrases. Since our sample is
large enough and chosen at random from the cluster, we are still
expected to identify many (if not most) of the tokens. The approach

described relies on the strength of the clustering phase, allowing
successful annotations over a large number of similar messages,
but not necessarily over the entire sample. This way, patterns can
be identified even if for some cases the annotation fails.

3.4 Step 2: Rule Refinement

In the second step, we refine the light annotations from the first
step to include contextual meaning. For example, we’d like to un-
derstand whether an airport code stands for the departure airport
or the arrival airport in a flight itinerary. This requires departing
from the local XPath view, and considering connections between
multiple XPaths, sometimes within the entire x-cluster. As annota-
tions take context into consideration, the supported annotations
are specifically tailored to the use case, e.g., annotations for flights
would be different than for purchases. A date token in an itinerary
may stand for a departure or arrival date, while it may represent the
expected delivery date when the message is a shipping notification.
We assume to know the classification of the underlying x-cluster,
which can be generated using known techniques [4].

Our approach is based on learning the context of each annota-
tion by the use of machine learning. Given an x-cluster table of
cluster ¢, we associate each light annotation of a variable XPath
XP; with a vector of features. These features are naturally based
on the characteristics of XP;, but also on the other XPaths in the
x-cluster, i.e., {XPy} where k = 1,...,i— 1,i+ 1,...K, K being
the number of XPaths in c. The features used for can be divided
into two main types: one includes the light annotations, and the
other includes indicative words. For example, in the travel domain,
light annotations could be <time>, <airport> or <name>, while
indicative words could be “passenger”, “depart” or “arrive”. The col-
lection of inductive words are identified using both human experts
and automatic statistical techniques (e.g., tf-idf weighting schemes).
The annotations and words considered relevant for some XP; are
those that can be found at its proximity. Proximity is defined in
two ways. The first is the distance between XPaths according to the
DOM tree representation of c. The second way by which proximity
is defined is based on the visualization of the cluster’s structure and
uses the CSS? of the HTML. It can be specifically tailored to HTML
tables, where a feature is associated with the relative position of its
table entry with respect to XP;.

Based on these features, we can classify each light annotation to
a contextual annotation. We follow standard machine learning pro-
cedures for training the classifier, and use Random Forest [24] after
carefully comparing with other classifiers. Details regarding the
train and test sets used for the classifier are presented in Section 5.

2Cascading Style Sheets (CSS) is a style sheet language used for describing the presen-
tation of a document written in HTML or any other markup language.



Check-in is open for TP438, departing from Lisbon (LIS) to Paris (CDG), on 09JAN16 at 16:20.
Check-in is open for TP954, departing from Lisbon (LIS) to Geneva (GVA), on 06JAN16 at 19:25.
Check-in is open for TP569, departing from Hamburg (HAM) to Lisbon (LIS), on 05JAN16 at 12:45.

Check-in is open for <flight-code>, departing from <place-depart> (<airport-depart>)
to <place-arrive> (<airport-arrive>), on <date-depart> at <time-depart>.

Figure 2: Example of an extraction rule.

4 SYSTEM & TRAFFIC ANALYSIS

The mail extraction process has been productized in Yahoo mail
backend. We provide details regarding its deployment along with
some traffic analysis, focusing on flight itineraries use case.

4.1 Deployment

The architecture of the mail extraction system, as deployed in Yahoo
mail backend, is described in Figure 3. The classification, clustering,
sampling and rule creation modules are all part of the offline process,
leading to the creation of the extraction rules. The rules creation
module is the heart of our process, and is fully covered in Section 3.
Sampling is performed for clusters of predefined classes that are
supported by the extraction process (e.g. flights, coupons, purchases,
etc.) as annotations are specific for each use case. The classification
is attained using the method described in [4]. Thus, sampling is
based on the output of the classification and clustering modules.
The output of the sampling module are x-cluster tables for all x-
clusters that have enough samples, based on the threshold T set in
the system. The concrete value of I' depends on the desired level of
trade-off between quality and coverage, as discussed later on. The
rules, the samples, and all information related to their respective
x-clusters and annotations are stored in the Rules Management
Framework (RMF). The RMF has a Ul interface that allows human
intervention for quality assurance purposes, or modification of
certain rules in case of need. The online process is applied over the
incoming messages stream. For each message, its x-cluster is first
computed. Then, the respective rule is fetched from the RMF and
applied to the message. Finally, the extraction data is stored in a
dedicated storage, to be further used by various applications.
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Figure 3: The architecture of the mail extraction system.

The online extraction process is extremely light-weight by de-
sign. When it is applied to a message under consideration it is
essentially instantaneous, that is, it takes only few milliseconds to
complete in most cases. The more involved computational part of
our approach is the offline rules creation process. This process is
implemented in Hadoop MapReduce [17]. This enables creating the
extraction rules efficiently in parallel as an extraction rule for one
x-clusters is independent of the rules generated for other x-clusters.
The most computation-intensive step in our approach is the ran-
dom sampling which requires going over the entire inbound mail
corpus during some time period. Providing concrete time measure
for each of the modules seems redundant as they depend on the
number of messages that are taken into consideration, the number
of computational units used in the parallel processing, additional
load on the MapReduce system, and more. Still, we note that the
time consumed by the automatic rules creation module is smaller
by roughly an order of magnitude than the time of the prelimi-
nary steps, i.e., clustering, classification and sampling. For example,
when the preliminary steps take few hours, the rules creation takes
only few minutes.

4.2 Traffic Analysis

We analyze the characteristics of the traffic corresponding to flight
itineraries with respect to the phases preceding the rules creation,
namely, classification, clustering and sampling. The analysis was
performed over one week of traffic during April 2017, leading to
about 500 domains that contained x-clusters classified as flight
itineraries. We first look at the distribution of traffic and x-clusters
per domain, presented in Figure 4. The domains in the x-axis are
ordered according to decreasing number of x-clusters in each do-
main. Thus, the curve descending exponentially corresponds to the
distribution of x-clusters number per domain. The second curve
corresponds to the distribution of the traffic (number of messages)
per domain, and is represented as percentage of the overall traffic
classified as flight itineraries (that is, overall number of messages
belonging to x-clusters classified as itineraries). The top-10 domains
with respect to the number of x-clusters are listed in Table 2. For
each domain, we specify the number of x-clusters and traffic cover-
age. As can be seen, there is a long tail of flight itinerary domains,
where the number of x-clusters varies between only dozens, to
hundreds or thousands, up to above 60K. It can also be seen that
there is no correlation between this number and the traffic coverage
of a domain. This leads to the understanding that there is a need
for a robust method that can handle different "types’ of domains,
and can reach high coverage and extraction quality with large as



Domain x-clusters | coverage
united.com 67,835 4.37%
e.delta.com 34,804 5.68%
luv.southwest.com 30,926 8.02%
amadeus.com 22,169 2.01%
aa.globalnotifications.com | 20,532 1.74%
cheapoair.com 16,473 0.73%
expediamail.com 12,638 1.88%
t.spiritairlines.com 12,332 4.70%
cs.tuiuk.com 10,504 0.45%
alaskaair.com 8,284 0.62%

Table 2: Top-10 flight domains wrt. x-clusters number.

well as small amounts of traffic per domain and x-cluster. This is
further emphasized in the next figure as well as in Section 5.3.
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Figure 5 exhibits the coverage obtained for different threshold
values for the sample size. That is, it represents the relative coverage
percentage when taking into consideration only x-clusters that have
more than I" messages. The three curves in the figures correspond to
coverage in terms of number of x-clusters, number of mail messages,
and number of domains. It is important to note that while the
number of covered x-clusters drops drastically for values of ' >
20, the coverage in terms of number of messages and domains
remain close to or above 80%. This affirms the strength of our
solution, which allows a relatively high coverage for a wide range of
threshold values. Remark that for small values of T, the coverage is
higher, but the small number of samples might negatively influence
the quality of the extractions. Notably, our solution can be easily
adjusted to optimize between quality and coverage. This trade-off
is further explored in Section 5.3.
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Figure 5: Trade-off between sample size and coverage.

5 EXPERIMENTAL EVALUATION

We demonstrate the value of our approach through an offline evalu-
ation based on Yahoo Web mail traffic. As in Section 4, we adapt our
general approach, detailed in Section 3, to the travel domain, and
more specifically, to flight itineraries. We divide our evaluation into
two parts. In the first part (Section 5.1), we evaluate the extraction
rules, while in the second part (Section 5.2) we consider our entire
extraction process and evaluate its final output. The first part is
further partitioned into two sub-parts, one for the evaluation of the
basic rules, and the other for the evaluation of the refined rules.

The first evaluation part is based on a manually labeled set, allow-
ing us to evaluate independently each phase of the rules creation.
Conversely, the second part evaluates the final output of the end-to-
end process, resulting from the consecutive application of all phases
described over real Yahoo mail traffic at large scale. We further note
that when considering the rules, the evaluation is performed at the
XPath level, and when considering the output of the extractions,
the evaluation is performed at the message level.

5.1 Evaluation of the Extraction Rules

5.1.1 Dataset. The evaluation of this phase is based on a manu-
ally labeled set, referred to as golden set. The golden set was created
by selecting 850 x-clusters belonging to 60 different domains that
were classified as flights.

For each x-cluster, we presented three mail samples to profes-
sional quality assurance staff, referred to as editors, for manual
labeling. We note that this process was conducted under full pri-
vacy preservation in accordance with Yahoo privacy policy. The
manual labeling was performed at the XPath level. For each XPath,
editors selected labels from a predefined set of contextual annota-
tions as presented in Table 4. Note that an XPath could be associated
with more than a single label in case its value contains more than
one annotation, e.g., an XPath containing both an airport name and
a place. For constant XPaths, no labels were provided.

5.1.2  Evaluation of the Basic Rules. We built several annotators
for identifying light annotations for flight itineraries. Those an-
notators were computed using the two approaches presented in
section 3.3, that is, dictionaries and regular expression patterns. We
evaluated the basic (light annotation) rules as follows. For each
XPath, we compared the light annotations resulting from the man-
ual labeling, to the light annotation assigned by our automated
method. The results are presented in Table 3 in terms of precision,
recall and F-measure (F;-score).

Looking at the results, one can see that almost all light anno-
tations achieve precision and recall above 90%. The single caveat
is the recall of the place annotator. As it turns out, places have
high variability both in absolute number and different ways to spell
the (essentially) same place. Any dictionary-based annotator has
high-dependency on the richness of the dictionary and its coverage
of unpopular terms. In accordance, extending the places dictionary
that underlies this annotator and adding more advanced canon-
ization techniques are likely to significantly improve this metric.

5.1.3  Evaluation of the Refined Rules. In order to evaluate the
rules refinement step, without any dependency on the preceding
step of basic rules creation, we trained our model on the light



Annotation Type Precision Recall F-score
confirmation-code Regex 100% 96% 0.98
airport Dict.  97% 87% 0.92
date Regex 96% 92% 0.95
name Dict.  92% 90% 0.91
place Dict.  98% 77% 0.86
time Regex 99% 94% 0.97

Table 3: Evaluation of light annotations for flights.

annotations obtained from the manual labeling of the golden set. We
trained a model for the classification of each type of light annotation
into its optional contextual annotations, as described in Section 3.4.
Our labeled set consisted of about 17K anonymized XPaths®. We
applied cross-validation on the data with 5-folds in order to assess
the classifiers performance. The evaluation results are presented
in Table 4. As can be seen, the precision and recall of most refined
annotations are above 90%.

Annotation Precision Recall F-score
airport-depart 91% 96% 0.93
airport-arrive 95% 89% 0.92
date-booking 100% 78% 0.87
date-flight 90% 99% 0.94
name-passenger 97% 99% 0.98
name-user 96% 86% 0.91
place-depart 94% 95% 0.94
place-arrive 94% 93% 0.94
time-depart 91% 94% 0.93
time-arrive 93% 90% 0.91

Table 4: Evaluation of contextual annotations for flights.

5.2 [Evaluation of the Extraction Output

We evaluate the performance of the entire automatic extraction
process by comparing its output to the output of the extraction
process presented in [4]. This latter process was based on manually-
defined rules, and hence, we refer to it as the manual rules process4.
The process was applied to 10M messages received in December
2016 from 100 flight domains, and associated with 36K x-clusters.
The intersection between those domains and the domains of the
golden set described in Section 5.1 leads to 40 domains, allowing
the validation of our process on domains that were not necessarily
part of the training set.

As a first step, we gathered samples for the 36K x-clusters during
a two weeks period in December 2016. Extraction rules were created
using our automated process for each of those x-clusters. The rules
created by our process were applied to the same traffic as the manual
rules process. Note that we ignored x-clusters for which we could
not gather enough samples, as defined by the threshold I' = 50.

The results of the comparison between the output of our au-
tomatic process and the output of the manual rules process are
presented in Table 5. Here, the comparison was performed over

3We emphasize that all the experiments reported here have been conducted on fully
anonymized data, in accordance with Yahoo strict privacy policy.

4 A note is added to avoid confusion between two manually created sets: (1) the golden
set used for training the contextual annotation model, as well as for the evaluation in
Section 5.1; and (2) the manual process presented in [4] used for creating extraction
rules, against which our automatic end-to-end process is evaluated.

Annotation Precision Recall F-score
airport 94% 94% 0.94
airport-depart 85% 91% 0.88
airport-arrive 88% 89% 0.88
confirmation-code  88% 88% 0.88
date 82% 96% 0.88
date-flight 82% 96% 0.88
name 90% 93% 0.91
name-passenger 75% 78% 0.76
place 94% 92% 0.93
place-depart 78% 84% 0.81
place-arrive 86% 88% 0.87
time 94% 96% 0.95
time-depart 91% 95% 0.93
time-arrive 73% 73% 0.73

Table 5: Evaluation of entire extraction process for flights.

the set of extractions per message. An extraction is considered
successful if the output strings match between the two processes
and get the same annotation. The results are computed per type of
annotation, considering both light and contextual annotations. As
expected, the precision and recall for the entire process are usually
lower compared to its rules creation sub-parts, and mostly range be-
tween 80%-90% for both precision and recall. Note that we present
light as well as contextual annotations, even if considering only
one type of contextual annotation (e.g., date and date-flight, where
date-flight comprises a subset of date). This provides further under-
standing of the process, since for both annotation types, we now
evaluate the quality of the actual output, rather than the quality of
the rules as presented previously.

While our method could be further enhanced for specific anno-
tations, there are other less obvious reasons for the performance
decrease that ought to be discussed. First and foremost, the manual
rules process is far from being perfect. It is noisy and not all its ex-
tractions are successful, and thus, it only approximates the ground
truth and cannot be considered as truly clean. It is important to
note that failures in the manual process translate to (false) failures
accounted for our automatic process since our process usually does
not make the same errors as the manual process. Second, our pro-
cess was specifically tuned for samples in English, and therefore,
had decreased performance metrics for messages in other languages.
Lastly, our process was influenced by a skewness of the data that
resulted in a decreased performance of the classifier for arrival time.

5.3 Trade-off Between Quality and Coverage

We investigate the trade-off between the quality of our process and
the traffic coverage. Both measures rely primarily on the threshold
T, which defines the minimal size of an x-cluster, that is, the mini-
mal number of samples required for creating extraction rules for an
x-cluster. This value influences the quality of the light annotations
step, as it is based on the horizontal analysis of each x-cluster and
XPath, according to their samples. Conversely, the step of contex-
tual annotations is based on learning, where for each annotation,
training examples are gathered from our entire set of samples for all
x-clusters, and thus does not rely on T'. As demonstrated in Section
4.2, the threshold I has also a direct influence on the coverage we



can achieve, as extractions are not performed for x-clusters that do
not meet the threshold.

Figure 6 presents the F-score of the light annotation step in
our process for different values of I' when the process is applied
to the mail data from the previous section. Recall that this mail
corpus consisted of about 10M messages. As can be seen, the higher
the value of T, the higher the quality of the annotations. This is a
natural outcome, as the more samples we have per x-cluster, the
more values we have per XPath, and the more precise is our process.
For example, annotations relying on dictionaries (airport, name,
place) benefit from a large sample since unpopular terms have
smaller influence. One can also observe that the improvement in
quality becomes smaller when I' is larger than 20. This demonstrates
that our process does not require a high number of samples per
x-cluster to achieve high quality.
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Figure 6: Extraction quality as a function of T.

6 CONCLUSIONS

We presented a fully-automated approach for mail extraction of
machine generated messages. We leveraged a structural clustering
method for messages, and devised a modular automated method for
creation of extraction rules at the cluster level. We presented the
entire solution along its architecture, performance considerations,
and an analysis of the traffic related to its different phases.

Then, we performed thorough offline experiments for evaluat-
ing our automated extraction method over real Yahoo mail traffic,
considering both the quality of the extraction rules as well as the
quality of the entire extraction pipeline. We adapted our solution to
the travel domain, and specifically to flight itineraries, and provided
clear evaluation. For the rules evaluation, we achieved a perfor-
mance of above 90% in precision and recall, while for the extraction
output evaluation, our numbers mostly range between 80%-90%.
We further discussed some data insights and ideas for improvement.
We believe that this work is an important step in the field of infor-
mation extraction in the Web mail domain, and more specifically,
for the task of reaching fully-automated mail extractions, adapted
to the large scale of this domain.
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