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ABSTRACT
Query auto-completion (QAC) facilitates user query composition
by suggesting queries given query prefix inputs. In 2014, global
users of Yahoo! Search saved more than 50% keystrokes when
submitting English queries by selecting suggestions of QAC.

Users’ preference of queries can be inferred during user-QAC
interactions, such as dwelling on suggestion lists for a long time
without selecting query suggestions ranked at the top. However, the
wealth of such implicit negative feedback has not been exploited for
designing QAC models. Most existing QAC models rank suggested
queries for given prefixes based on certain relevance scores.

We take the initiative towards studying implicit negative feed-
back during user-QAC interactions. This motivates re-designing
QAC in the more general “(static) relevance–(adaptive) implicit
negative feedback” framework. We propose a novel adaptive model
adaQAC that adapts query auto-completion to users’ implicit neg-
ative feedback towards unselected query suggestions. We collect
user-QAC interaction data and perform large-scale experiments.
Empirical results show that implicit negative feedback significantly
and consistently boosts the accuracy of the investigated static QAC
models that only rely on relevance scores. Our work compellingly
makes a key point: QAC should be designed in a more general
framework for adapting to implicit negative feedback.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval—Query Formulation
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1. INTRODUCTION
Query auto-completion (QAC) helps user query composition by

suggesting queries given prefixes. As illustrated in Fig. 1, upon
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Figure 1: A commercial search engine QAC. Given prefixes
“fac” and “face”, popular “facebook”-related queries are sug-
gested to users after being ranked by certain relevance scores.

a user’s keystroke, QAC displays a suggestion list (or list) below
the current prefix. We refer to queries in a suggestion list as sug-
gested queries or query suggestions. A user can select to submit a
suggested query; a user can also submit a query without selecting
query suggestions. In 2014, global users of Yahoo! Search saved
more than 50% keystrokes when submitting English queries by se-
lecting suggestions of QAC.

Typically, a user favors and submits a query if it reflects the
user’s query intent in a query composition. However, predicting
query intent is challenging. Many of the recently proposed QAC
models rank a list of suggested queries for each prefix based on dif-
ferent relevance scores, such as popularity-based QAC (using his-
torical query frequency counts) [2], time-based QAC (using time
information) [32, 35], context-based QAC (using previous query
information of users) [2], personalized QAC (using user profile in-
formation) [31], time-and-context-based QAC (using both time and
previous query information of users) [5].

The aforementioned models use different relevance features but
do not fully exploit user-QAC interactions, such as users’ dwell
time on suggestion lists and ranked positions of suggested queries
by QAC. When users do not select query suggestions at keystrokes
of compositions, users implicitly express negative feedback to these
queries. Hence at such keystrokes, the user-QAC interaction infor-
mation is users’ implicit negative feedback to unselected queries.
We aim at complementing relevance features with implicit nega-
tive feedback to improve the existing QAC models.

We start with a motivating example.
Motivating Example: Consider a user who wants to query Ap-

ple Inc.’s “facetime” with a popularity-based QAC [2]. When the
user types “fac”, “facebook” is ranked at the top in the suggestion
list because it is most popular in historical query logs. The user
dwells for a long time to examine the suggested query “facebook”
but does not select it because it is not “facetime”. However, in the
next keystroke “e”, popularity-based QAC still makes “facebook”
top in the list because it is still the most popular query that matches



the prefix “face”. Fig. 1 depicts our interactions with a commercial
search engine QAC known to depend on relevance scores only.

Here the user implicitly expresses negative feedback to “face-
book”: “facebook” is the top query suggestion, and the user dwells
on the suggestion list for a long time without selecting this query.
Hence, based on such implicit negative feedback, the user may not
favor this unselected query. Can QAC be more accurate and demote
“facebook” properly given the prefix “face”?

Our Approach: To the best of our knowledge, no existing QAC
adapts its ranking of query suggestions to implicit negative feed-
back. We refer to a QAC model as static QAC, if its ranking of
suggested queries does not adapt to implicit negative feedback in
a query composition. Examples include popularity-based QAC,
time-based QAC, and context-based QAC.

We go beyond static QAC by designing QAC in the new and
more general “(static) relevance–(adaptive) implicit negative feed-
back” framework. In this framework, we propose a novel adaQAC
model that adapts QAC to implicit negative feedback. adaQAC
reuses the relevance scores of queries from static QAC to pre-index
top-N queries. In a single query composition, adaQAC re-ranks
these N queries at every keystroke based on users’ implicit nega-
tive feedback. Personalized learning for every different user with
batch inference is employed by adaQAC, and adaQAC can be ex-
tended by un-personalized learning and online inference.

Our Contributions: This work has many distinctions from re-
lated research in QAC, negative feedback, and dynamic informa-
tion retrieval; we present detailed discussions on such distinctions
in §5. Our contributions are summarized as follows.
• To the best of our knowledge, this is the first study on im-

plicit negative feedback in user-QAC interactions. We find that the
strength of implicit negative feedback to unselected query sugges-
tions can be inferred, and a simple model fails (§2).
•We go beyond static QAC under a general “(static) relevance–

(adaptive) implicit negative feedback” framework: we propose a
novel adaQAC model that adapts QAC to implicit negative feed-
back using personalized learning with batch inference, including
un-personalized learning and online inference extensions (§3).
•We collect user-QAC interaction data from a commercial search

engine and perform large-scale experiments. We show that implicit
negative feedback significantly and consistently boosts the accu-
racy of the investigated static QAC models (§4).

2. IMPLICIT NEGATIVE FEEDBACK IN
USER-QAC INTERACTIONS

We study QAC log data from a commercial search engine and
discuss several motivational observations on implicit negative feed-
back in user-QAC interactions.

Terminology: In general, on search engines, queries are submit-
ted upon users’ selection from suggestion lists. Below are the other
used terms.

Query composition (Composition): The duration of composing
and submitting a single query. It starts from the keystroke of a
new query’s first character, or from the keystroke starting to edit a
previous query. It ends when a query is submitted.

Dwell time: The time dwelled on a suggestion list. It is the time
gap between two immediate keystrokes in a query composition.

Position: The ranked position of a query in a suggestion list by
QAC. Position 1 means being ranked highest or at the top, while 10
corresponds to being ranked lowest or at the bottom.

QAC log data: Our collected user-QAC interaction data from Ya-
hoo! Search. There are 2,932,035 query compositions via desktops
and they are sampled over five months in 2014. A composition has

the prefixes, timestamps and suggested queries of every keystroke,
and the submitted query. More details of the data are in §4.1. Due
to the proprietary nature of the data, some details are omitted in
data descriptions and figures.

2.1 Implicit Negative Feedback
Typically, a user favors and submit a query that reflects the user’s

query intent in a query composition. We make the following as-
sumption.

ASSUMPTION 1. In a query composition, a user submits a query
if and only if the user favors it.

When a suggestion list is displayed, a user may examine or ig-
nore a suggested query [21]. If a user ignores and does not select
a suggested query, whether the user favors this query is unknown.
If a user examines a suggested query but does not select it, there
are two usual cases: (1) the user does not favor it; (2) the user still
favors the suggestion but the user thinks selecting it from the list is
less convenient than typing. In spite of possibly complicated cases,
under Assumption 1 we make the following assumption.

ASSUMPTION 2. In a query composition, suppose a user fa-
vors a suggested query. For the user, the likelihood of selecting this
query is proportional to the likelihood of examining the query.

Suppose a user examines a suggested query in a composition
with a higher likelihood. From Assumption 2, if the user favors the
query, the user selects it with a higher likelihood. Otherwise, if the
user does not select a suggested query after examining the query, it
hints that the user may not favor this query. Under Assumption 1,
this user may not submit this unfavored query in the composition.
Hence, the examined but unselected query may be demoted at the
subsequent keystrokes in the same composition; it allows the user’s
favored query to rank higher in the composition.

Therefore, in a composition when a user does not select a sug-
gested query, it may be helpful to know whether the user examines
the unselected query. In other words, if the user examines an uns-
elected query with a higher likelihood, this query may be demoted
more heavily at the subsequent keystrokes of the composition.

For an unselected query suggestion, although whether a user ex-
amines it, is not observed, user-QAC interactions can be observed.
Such interaction information includes user behavior (dwell time)
and settings (position) that are observed during the interactions.

Implicit negative feedback from a user to an unselected query
suggestion is observed user-QAC interaction information, when the
query is suggested to the user upon keystrokes of a composition. In
other words, a user can implicitly express negative feedback to an
unselected query “facebook”: “facebook” is the top query sugges-
tion, and the user dwells on the list for long without selecting it.

We claim that implicit negative feedback can be strong or weak,
and its strength cannot be directly observed thus has to be inferred.
The properly inferred implicit negative feedback strength may be
used to properly demote unselected query suggestions. Recall the
discussion that “if the user examines an unselected query with a
higher likelihood, this query may be demoted more heavily”. Some
implicit negative feedback may indicate the likelihood of a user’s
examination of an unselected query suggestion. Hence, such feed-
back is of interest. Important examples are dwell time and position.

2.2 Dwell Time
If a user dwells on a suggestion list for a longer time, the user

may have more time to carefully examine the suggested queries.
On the other hand, if a user dwells for a shorter time, more likely

the suggested queries are ignored; thus, even if these queries are
unselected, whether the user favors them is unknown.
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(a) Distributions of dwell time from
10 randomly sampled users from
QAC log data.
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(b) Histogram of the most frequent
dwell time of a user. Bins with a user
percentage below 0.25% are omitted.
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Figure 2: Dwell time and position study. In (a) and (b), Value t at the horizontal axis corresponds to the dwell time bin [t, t+ 0.1).
(a) The two peak clusters imply two broad groups of users in the figure: User 1 and 2 generally type slower than the rest;
(b) The distribution shows that different users may have different typing speed;
(c) The percentage varies with different combinations of dwell time and position thresholds. Red color (wide on the right) corresponds
to a higher percentage while blue color (narrow on the left) corresponds to a lower percentage. With a longer dwell time and a higher
position, the likelihood that an unselected query suggestion will not be submitted by users at the end of query compositions is higher.

Fig. 2(a) elucidates the distributions of the 0.1-second dwell time
bin between 0 and 3.1 seconds of 10 randomly sampled users from
QAC log data1. Dwell time t (in seconds) falls in the bin [t, t+ 0.1).
As the peak shows the most frequent dwell time bin of a user, it
may suggest the user’s comfortable typing speed: if the peak falls
in the bin of a longer dwell time, the user’s general typing speed is
slower. The observed heavy-tails of the distributions manifest that
longer dwell time is generally rarer, and the peak can characterize
the user’s typing speed. Thus, in Fig. 2(a), the two peak clusters
may imply two broad groups of users: User 1 and 2 generally type
slower than the rest.

Fig. 2(b) zooms out from 10 users’ dwell time distributions to all
the users’ implied comfortable typing speed with a distribution for
dwell time of the peaks in Fig. 2(a). It demonstrates that different
users may have different typing speed. Hence, inference of implicit
negative feedback strength by dwell time should be personalized.

2.3 Dwell Time and Position as Implicit
Negative Feedback

We study dwell time and position of unselected query sugges-
tions that are not submitted by users.

The suggested queries at all the keystrokes in query composi-
tions are collected. Then, suggested queries at the final keystrokes
in query compositions are excluded because users may select a sug-
gested query at the final keystroke: only the percentage of unse-
lected queries that are not submitted by users is of interest.

Suppose a dwell time threshold TDT and a position threshold TP
are set up. Consider all the suggested queries Q(TDT , TP ) that are,
both in the list that is dwelled for no shorter than TDT , and, ranked
at positions no lower than TP (dwell time ≥ TDT and position
≤ TP ). Given TDT and TP , ∀q ∈ Q(TDT , TP ), the percentage of
occurrences of q that are not submitted by users at the end of query
compositions is recorded. The recorded results are illustrated in
Fig. 2(c), with 300 different combinations of TDT and TP values,
where TDT ∈ {0.1, 0.2, . . . , 3.0} and TP ∈ {1, 2, . . . , 10}.

Recall Assumption 1 that a user submits the favored query in a
composition. The percentage of users’ unselected query sugges-

1Binning masks details of the data for its proprietary nature.

tions that are not favored by them, can be interpreted by the corre-
sponding color in Fig. 2(c). As discussed in §2.1, implicit negative
feedback strength may indicate how to demote unselected queries.
For a more accurate QAC, the demotion should properly reflect the
likelihood of not favoring or submitting an unselected query: such
likelihood is higher with a longer dwell time and a higher position,
as shown in Fig. 2(c). Thus, the results in Fig. 2(c) support the
hypothesis that dwell time and position are important to infer the
strength of implicit negative feedback.

From Fig. 2(c), when a position threshold TP is fixed, a dwell
time threshold TDT better differentiates the likelihood of not fa-
voring or submitting an unselected query, when 0 < TDT < 1.
This agrees with the results in Fig. 2(a)—2(b) that, longer dwell
time is generally rarer.

2.4 Filtering Queries by Thresholds Fails
Following the findings in Fig. 2(c), it is tempting to extend an ex-

isting QAC model by filtering out all the suggested queries based
on dwell time and position thresholds. Thus, we set up a base-
line model Filtering QAC to filter out all the suggested queries by
using fixed dwell time and position thresholds in the subsequent
keystrokes of a query composition. For instance, for TDT = 2 and
TP = 3, any previously suggested queries with positions higher
than or equal to 2 and dwell time longer than or equal to 3 seconds
are not suggested anymore in the subsequent keystrokes of the same
query composition. To ensure a higher ranking accuracy, the results
of Filtering QAC are tuned among TDT ∈ {0.1, 0.2, . . . , 3.0} and
TP ∈ {1, 2, . . . , 10}.

However, experimental results (§4.2) show this simple model
fails to significantly boost the static QAC models.

3. ADAPTIVE QUERY AUTO-COMPLETION
Motivated by the findings from large commercial search engine

QAC log data in §2, we propose a novel adaQAC model that adapts
query auto-completion to implicit negative feedback.

3.1 Method Overview
We describe the system design of adaQAC to rank the suggested

queries for a given prefix. A toy example with two queries “face-



Figure 3: The system design and data flow of adaQAC

book” and “facetime” that match prefixes “fac” and “face” at top
positions is used to illustrate the idea. Fig. 3 explains the system
design and data flow of adaQAC: it has two stages.

Stage 1 (Pre-indexing): For a given prefix, top-N query sug-
gestions with the highest relevance scores of static QAC are pre-
indexed: the higher score, the higher position. In Fig. 3, for the
prefix “face”, the top-2 (N = 2) queries “facebook” and “face-
time” are pre-indexed by static QAC based on the historical query
frequency counts.

Stage 2 (Re-ranking): adaQAC re-ranks these top-N queries
based on the implicit negative feedback strength inferred from user-
QAC interaction information in the same composition. To illus-
trate Stage 2, upon a keystroke “e” following the prefix “fac” from
a user, the front-end interface takes the current prefix “face” as
an input and immediately fetches the pre-indexed queries “face-
book” and “facetime”. Suppose when “facebook” was ranked high-
est in the suggestion list at the prefix “fac”, the user dwells for
a long time but does not select it. With this observation, sup-
pose adaQAC is able to infer the user’s implicit negative feedback
strength. Thus, adaQAC updates the ranking score of “facebook”
and re-ranks the top 2 (N = 2) queries “facebook” and “facetime”.
With re-ranking, “facetime” is now at Position 1, after “facebook”
is demoted to Position 2.

The number of the pre-indexed top queries N can be set to a
small positive integer in a production, such as 10 in our experi-
ments. With a small constant value N , sorting N queries based on
the updated ranking scores can be achieved in constant time [7].

3.2 “(Static) relevance–(Adaptive) Implicit
Negative Feedback” Framework

We highlight that, adaQAC is designed in a more general “(static)
relevance–(adaptive) implicit negative feedback” framework.
The “relevance” component is the relevance score of a query for a
user that can be obtained from an existing static QAC model, such
as popularity-based QAC; the other “implicit negative feedback”
component adapts QAC to implicit negative feedback.

The “(static) relevance–(adaptive) implicit negative feedback”
framework is more general for both reusing existing static QAC re-
search and adapting QAC to the newly discovered implicit negative
feedback. In this framework, adaQAC is not constrained to employ
a certain relevance score: in §4 we investigate several different rel-
evance scores with different parameter values in these scores.

3.3 Problem Formulation
Consider a user u ∈ U, where U is the set of all adaQAC users,

at the k-th keystroke in a query composition c∈C(u), where C(u)

Table 1: Main Notations
Symbol Description
U User set.
u User.
C(u) Query composition set of a user u.
c Query composition.
K(c) Number of keystrokes in a query composition c.
k Keystroke index: k ∈ {1, 2, . . . , K(c)}.
Q Query set.
q, q′ Query.
q∗(c) Submitted query in a query composition c.

r(k)(u, q, c)
Relevance score for a user u of a query q that matches
the prefix at a keystroke k in a query composition c.

Q(k)(r, u, c,N) Set of topN queries ranked by r(k)(u, q, c).

x
(k)
l×1(u, q, c)

Implicit negative feedback feature vector from a user u
to a query q at a keystroke k in a query composition c.

Φl×m(U)
Implicit negative feedback feature

weight matrix for a user set U.

φl×1(u)
Implicit negative feedback feature

weight vector for a user u.

p(k)(u, q, c)
Preference for a query q of a user u

at a keystroke k in a query composition c.
λ Regularizer weight parameter.

Table 2: Feature descriptions of the adaQAC model. The im-
plicit negative feedback feature vector x(k)(u, q, c), from a user
u to a query q at a keystroke k in a query composition c, con-
tains the following information collected from the beginning of
c to the (k − 1)-th keystroke in c.

Feature Description
DwellT-M The maximum dwell time when q is suggested.
DwellT Total dwell time where q is suggested.
WordBound No. of the keystrokes at word boundaries when q is suggested.
SpaceChar No. of the keystrokes at space characters when q is suggested.
OtherChar No. of the keystrokes at non-alphanum. char. when q is suggested.
IsPrevQuery 1 if q is the immediately previous query; 0 otherwise.

Pos@i No. of the keystrokes when q is at Position i of a
suggestion list (i = 1, 2, . . . , 10).

*Dwell time greater than 3 seconds at one suggestion list is set to 3 seconds.

is the query composition set of u. adaQAC suggests a ranked list of
queries in Q according to the ranking scores determined by a prob-
abilistic model. The probabilistic model is based on a combination
of the relevance score and the inferred strength of implicit negative
feedback. For a query q that matches the prefix at the keystroke k
in the query composition c, the relevance score of q for the user u
is denoted as r(k)(u, q, c).

Implicit negative feedback from the user u to the query q at the
k-th keystroke in the query composition c is represented by a fea-
ture vector x

(k)
l×1(u, q, c), where l is the number of features. The

strength of implicit negative feedback is based on x
(k)
l×1(u, q, c)

and its associated implicit negative feedback feature weight vec-
tor φl×1(u) for u. φl×1(u) is a column vector indexed by u from
the implicit negative feedback feature weight matrix Φl×m(U) for
all the users in U. Here m is the number of users in U.

In a query composition c, prefixes with the corresponding sug-
gestion lists are referred to by sequential keystroke indices k ∈
{1, 2, . . . ,K(c)}, where K(c) is the number of keystrokes in a
query composition c. For instance, for a query composition c start-
ing from an empty string with three keystrokes “fac” (K(c) = 3),
the prefix “fac” with the suggestion list in the left of Fig. 1 can be
referred to by k = 3 in c or simply K(c) in c. Table 1 briefly
summarizes the main notations.

3.4 Personalized Learning
Table 2 lists the features used by adaQAC to fit in the “implicit

negative feedback” component. Dwell time and positions are stud-



ied in §2.3. Likewise, the other features also indicate how likely
users examine query suggestions.

Based on §2.2, such as the observation that different users may
have different typing speed, personalized learning is used: φ(u) is
to be learned separately for each u ∈ U to form Φ(U).

3.4.1 Probabilistic Model
We model preference p(k)(u, q, c) for a query q of a user u at

a keystroke k in a query composition c, by a generalized additive
model [10]:

p(k)(u, q, c) = r(k)(u, q, c) + φ>(u)x(k)(u, q, c). (1)

In Equation 1, the preference model p(k)(u, q, c) is able to re-
flect a user u’s preference for a query q after the implicit negative
feedback x(k)(u, q, c) is expressed to q before the k-th keystroke
in a query composition c. With the associated feature weights φ(u)
personalized for u, φ>(u)x(k)(u, q, c) encodes the strength of im-
plicit negative feedback to q from u with personalization.

When a user u submits a query q∗(c) at the final keystrokeK(c)
in a query composition c, c ends. The likelihood of the observa-
tions on the submitted query in a query composition together with
implicit negative feedback in Table 2 is to be maximized. Hence,
we define a probabilistic model for a submitted query q∗(c) by u
at K(c) in c with a softmax function that represents a smoothed
version of the “max” function [3, 38]:

P
(
Q = q

∗
(c) | u, c,K(c)

)

=

exp

[
p

(
K(c)

)(
u, q∗(c), c

)]
∑

q∈Q(k)(r,u,c,N)
⋃
{q∗(c)}

exp

[
p

(
K(c)

)
(u, q, c)

] , (2)

where Q(k)(r, u, c,N) represents the set of top N queries ranked
by r(k)(u, q, c). Its union with {q∗(c)} ensures proper normal-
ization. Likewise, adaQAC predicts the likelihood that a query
q′ ∈ Q(k)(r, u, c,N) to be submitted by a user u at any k in c
by

P
(
Q = q

′ | u, c, k
)

=
exp

[
p(k)(u, q′, c)

]
∑

q∈Q(k)(r,u,c,N)

exp
[
p(k)(u, q, c)

] ∝ p(k)
(u, q

′
, c).

(3)

In practice, the simpler form p(k)(u, q′, c) in Equation 3 is used
for re-ranking in Stage 2 of adaQAC (§3.1) after φ(u) in Equation 1
is inferred. If a query q never appears in any suggestion list before a
keystroke k in a query composition c, x(k)(u, q, c) is a zero vector
and the user u’s preference for q is the same as the relevance score
r(k)(u, q, c). Here k, c are used to refer to the prefix at k in c and
suggested queries must match the prefix. However, if u expresses
possibly stronger implicit negative feedback to q before k in c, say
q is dwelled longer and at a higher position for several times, then
the corresponding weights in φ(u) updates preference for q of u at
k in c with a lower p(k)(u, q, c) value; while possibly weaker im-
plicit negative feedback may correspond to shorter dwell time and
a lower position. The strength of the expressed implicit negative
feedback determines the level of penalizing u’s preference for q in
p(k)(u, q, c), which affects how to re-rank in Stage 2 of adaQAC.
This agrees with the earlier discussions on using proper implicit
negative feedback strength to properly demote an unselected query
suggestion (§2).

We highlight that, the preference model p(k)(u, q, c) in Equa-
tion 1 is designed in the more general framework as discussed

in §3.2. The “(static) relevance” component is r(k)(u, q, c), and
φ>(u)x(k)(u, q, c) acts as “(adaptive) implicit negative feedback”.

3.4.2 Batch Inference
In Equation 1 φ(u) is inferred with batch inference. The likeli-

hood for all compositions C(u) of a user u should be maximized.

maximize
φ(u)

∏
c∈C(u)

P
(
Q = q∗(c) | u, c,K(c)

)
. (4)

By Equation 2 and 4, a constrained optimization problem out
of minimizing negative log-likelihood with L2 regularization (to
avoid overfitting) is obtained as

minimize
φ(u)

∑
c∈C(u)

log
∑

q∈Q(k)(r,u,c,N)
⋃
{q∗(c)}

exp

[
p

(
K(c)

)
(u, q, c)

]

− p
(
K(c)

)(
u, q
∗
(c), c

)
subject to ‖φ(u)‖22 ≤ v, v ∈ R+

.

(5)
There is a one-to-one correspondence between the parameters v

in Equation 5 and λ ∈ R+, and the corresponding un-constrained
optimization problem is:

minimize
φ(u)

∑
c∈C(u)

log
∑

q∈Q(k)(r,u,c,N)
⋃
{q∗(c)}

exp

[
p

(
K(c)

)
(u, q, c)

]

− p
(
K(c)

)(
u, q
∗
(c), c

)
+
λ

2
‖φ(u)‖22,

(6)
where λ is the regularizer weight parameter. As there is no closed-
form solution for the optimization problem in Equation 6 due to
non-linearity of the softmax function [3], iterative batch inference
by gradient descent is used. We refer to an adaQAC model us-
ing personalized learning with batch inference as adaQAC-Batch.
Details for inferring φ(u) are in Appendix A.

3.4.3 Optimum and Convergence
The objective function of negative log-likelihood for softmax

functions with L2 regularization in Equation 6 is strongly convex
[28]. Hence, the inference is guaranteed to converge to the global
optimum [29]: adaQAC-Batch can be inferred precisely. As we
know, for a strongly convex objective function f(x) whose optimal
value is achieved with x = x∗, the number of iterations to get to
accuracy |f(x∗)− f(x)| ≤ ε takes a O(ln( 1

ε
)) time [4]. Our ex-

periments in §4.3 reinforce that, adaQAC-Batch converges quickly
and reaches the global optimum within a constant number of itera-
tions.

3.4.4 Computational Complexity
Suppose the relevance scores of queries for users, which depend

on static QAC, are available. During the training phase for a user
u, φ(u) is inferred with the constructed feature vectors. Assum-
ing the number of queries in a suggestion list and the number of
top queries for re-ranking (N in §3.1) are fixed small constants,
the feature construction has a time complexity ofO(lK(c)), where
l is the feature vector size and K(c) is the number of keystrokes
in a query composition c. Since the inference algorithm in Ap-
pendix A converges within a constant number of steps (§3.4.3),
it takes a O(l2 |C(u)|) time with a constant factor corresponding
to the number of convergence steps or a predefined value. Here
|C(u)| is the number of query compositions for a user u. Note
that the features in Table 2 are all distributive functions: the result
derived by applying the function to aggregate values is the same
as that derived by applying the function on all the data without
partitioning. To explain, let x

(k)
i (u, q, c) be DwellT-M(k)(u, q, c);



DwellT-M(k+1)(u, q, c) can be updated by simply taking the larger
value of DwellT-M(k)(u, q, c) and the dwell time at k + 1 in c, if q
appears in the suggestion list. With a fixed small constant value N
(§3.1), the suggestion at each keystroke takes a O(l) time.

3.4.5 Scalability on Hadoop MapReduce
A nice property of personalized learning is scalability. As adaQAC-

Batch infers φ(u) for each individual user u, the inference is par-
allel for different users on big query log data.

In particular, in the Hadoop MapReduce framework, the Φ(U)
inference phase of our experiments is conducted in parallel for dif-
ferent users by different Reducer nodes.

3.5 Extensions
For a user u, adaQAC-Batch requires training data related to u to

infer the feature weight φ(u). Now we consider a more challenging
cold-start scenario where u is a new user without related data for
training. Two ways of extensions can address the challenge.

3.5.1 Un-Personalized Learning
The first way is to infer the feature weights from all the existing

users excluding the new user. To maintain scalability on Hadoop
MapReduce, a gradient descent variant with averaging is used [38].
This un-personalized approach does not differentiate one user from
another, and is referred to as adaQAC-UnP.

Because only one feature weight vector is stored and shared by
all the users, adaQAC-UnP is cheap in storage.

3.5.2 Online Inference
adaQAC-Batch can be extended to an online inference style. For

a new user, first, assign the un-personalized learning output to ini-
tialize the feature weights; then, keep update the feature weights
with more observations of the user’s interactions with QAC.

We call this personalized online learning style extension adaQAC-
Online. Stochastic gradient descent is used for the online infer-
ence. It is similar to batch inference with the constrained optimiza-
tion problem out of minimizing negative log-likelihood with L2
regularization in Equation 5 replaced by

minimize
φ(u)

log
∑

q∈Q(k)(r,u,c,N)
⋃
{q∗(c)}

exp

[
p

(
K(c)

)
(u, q, c)

]

− p

(
K(c)

)(
u, q∗(c), c

)
subject to ‖φ(u)‖22 ≤ v, v ∈ R+.

Details for inferring φ(u) are in Appendix B.
Cost Analysis: adaQAC-Online costs more storage than adaQAC-

UnP due to maintaining different weights for all the users. As
shown in §4.4, adaQAC-Online trades its storage cost for slightly
higher accuracy than adaQAC-UnP. Compared with adaQAC-Batch,
the inference of adaQAC-Online takes a O(tl2) time, where t is
the number of observations and l is the feature vector size. Gen-
erally adaQAC-Online takes less time than adaQAC-Batch in in-
ference and has the same storage requirement for maintaining dif-
ferent feature weights for all the users. Comparing with adaQAC-
Batch, adaQAC-UnP takes the same order of time with less storage
requirement as it maintains only one feature weight vector that is
shared by all the users.

4. EVALUATION
We evaluate the proposed adaQAC-Batch and its two extensions

adaQAC-UnP and adaQAC-Online on QAC log data.

4.1 Data and Evaluation Measures
Data: We describe important details of our collected QAC log

data. Due to the proprietary nature of the data, some details are
omitted. The QAC log data are collected from Feb 28 to Jul 28,
2014 and all the queries are submitted via desktops. If a query is
submitted by more than two different users, its corresponding query
composition is used for evaluation. As adaQAC-Batch requires
training data for the feature weight inference, all the users with
fewer than 100 query compositions during the given five-month
range are filtered out. After the filtering, users are randomly sam-
pled and their 2,932,035 query compositions constitute the evalu-
ation data. There are in total 481,417 unique submitted queries.
All the query compositions have their anonymized user IDs and the
submitted queries. In one composition, the prefixes, timestamps
and suggested queries of every keystroke are collected.

The training, validation and testing data are split with a ratio of
50%/25%/25% in an ascending time order: the first half of a user’s
query compositions are used for training; the second and third quar-
ters are for validation and testing respectively. The validation data
are only used for parameter tuning. As adaQAC infers implicit neg-
ative feedback from user-QAC interactions in query compositions,
in §4.2—§4.5 we experiment on the prefixes at the last keystroke
of query compositions to use more interaction information. The
average length of query prefixes is 8.53 characters.

The data standardization procedure is transforming data to zero
mean and unit variance. All the feature values in Table 2 and the
relevance scores are standardized.

Measures for Accuracy: Mean reciprocal rank (MRR) is the
average reciprocal of the submitted query’s ranking in a suggestion
list. It is a widely-adopted measure to evaluate the ranking accuracy
of QAC [2, 21, 15, 31]. Success Rate@top-k (SR@k) denotes the
average percentage of the submitted queries that can be found in
the top-k suggested queries on the testing data, and was also used
to evaluate the QAC ranking accuracy [15]. In general, a higher
MRR or SR@k indicates a higher ranking accuracy of QAC [2, 21,
15, 31, 5]. Paired-t test is used to validate the statistical significance
of the accuracy improvement (p < 0.05).

4.2 Boosting the Accuracy of Static QAC
with Implicit Negative Feedback

Following the “(static) relevance–(adaptive) implicit negative feed-
back” framework (§3.2), we investigate relevance scores from pop-
ular static QAC with different parameter settings to compare the
accuracy of adaQAC-Batch, Filtering QAC, and static QAC.

The relevance scores reuse the existing research: MPC [2, 15,
21, 31], Personal(-S) [2, 5, 31], and TimeSense(-S) [5, 32, 35, 27].
•MPC: Most Popular Completion (MPC) ranks suggested que-

ries for a prefix based on the historical popularity of a query. A
more popular query gets a higher rank. Despite its simplicity, it
was found competitive by various studies [2, 15, 21, 31].
• Personal: Personal QAC for distinguishing different users can

achieve better accuracy [2, 5, 31]. Although personal information
may take many different forms, the Personal relevance score in this
work is an equal-weighted linear combination of the MPC score
and the standardized personal historical query frequency counts.
• Personal-S: It is the Personal relevance score with an optimal

combination with different weights of the MPC score and the stan-
dardized personal query frequency counts. The optimal weights
achieving the highest accuracy are tuned on validation data. Tun-
ing to the optimal weights makes Personal-S more competitive.
• TimeSense: Time is useful in QAC [5, 32, 35]. Hence, Time-

Sense is the same as Personal except that the personal historical



Table 3: Accuracy comparison of static QAC, Filtering QAC, and adaQAC-Batch (in percentage). Boldfaced results denote that the
accuracy improvement over static QAC is statistically significant (p < 0.05) for the same relevance score. adaQAC-Batch significantly
and consistently boosts the accuracy of static QAC for each relevance score. For instance, adaQAC-Batch (MPC) significantly boosts
static QAC (MPC) by 21.2% in MRR.

Relevance MRR SR@1 SR@2 SR@3
Static Filter adaQAC-Batch Static Filter adaQAC-Batch Static Filter adaQAC-Batch Static Filter adaQAC-Batch

MPC 50.62 51.83 61.33 (+21.2%) 40.74 42.27 55.86 (+37.1%) 52.03 53.19 63.17 (+21.4%) 58.09 59.21 66.09 (+13.8%)
Personal 61.85 62.68 70.97 (+14.8%) 51.31 52.45 64.27 (+25.3%) 64.02 64.78 73.71 (+15.1%) 70.34 71.09 76.94 (+9.4%)
Personal-S 66.02 66.52 74.43 (+12.7%) 55.30 56.24 67.09 (+21.3%) 68.51 68.92 77.73 (+13.5%) 74.58 74.97 80.97 (+8.6%)
TimeSense 64.32 65.14 73.70 (+14.6%) 53.77 54.92 66.82 (+24.3%) 66.54 67.45 76.41 (+14.8%) 72.39 73.28 79.81 (+10.3%)
TimeSense-S 65.56 66.19 74.69 (+13.9%) 55.02 56.11 67.57 (+22.8%) 67.83 68.27 77.76 (+14.6%) 73.68 74.11 80.97 (+9.9%)
*Static: Static QAC; Filter: Filtering QAC
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Figure 4: Convergence (left) and regularizer weight (right)
study for adaQAC-Batch (TimeSense-S). Plots are similar for
the other relevance scores. adaQAC-Batch converges quickly
and is not sensitive to the chosen regularizer weight near its
optimum.

query frequency counts is replaced by the all-user popularity counts
of a query in the 28-day time window before a query composition.
• TimeSense-S: It is the same as Personal-S except that Personal

is replaced by TimeSense.
For brevity, we denote “static QAC employing the MPC rel-

evance score” as “Static (MPC)”. Similar notations are used for
QAC models employing any relevance score.

Parameters values are tuned to achieve the highest accuracy on
validation data. Unless otherwise stated we set the number of it-
erations to 40 (adaQAC-Batch and adaQAC-UnP) and the regular-
izer weight to 0.01. Personal-S and TimeSense-S both combine a
MPC score with the optimal weight α and the other score with the
weight 1 − α. The optimal weights in Personal-S (α = 0.34) and
TimeSense-S (α = 0.42) achieve the highest MRR for static QAC.

In §2.4 we set up Filtering QAC with relevance scores, by ad-
ditionally filtering out all the suggested queries with certain dwell
time thresholds (TDT ) and position thresholds (TP ) in the subse-
quent keystrokes in a composition. To ensure higher competitive-
ness, the model is tuned among the 300 threshold value combina-
tions in §2.4. We set TDT = 0.9 and TP = 1.

Table 3 presents the accuracy comparison of static QAC, Fil-
tering QAC, and adaQAC-Batch. The simple Filtering QAC model
fails to outperform the corresponding static QAC with the same rel-
evance scores significantly. For each same relevance score, adaQAC-
Batch exploiting the added implicit negative feedback information
significantly and consistently boosts the accuracy of these static
QAC models that only use relevance scores. With more accu-
rate relevance scores such as Personal and TimeSense, adaQAC-
Batch is more accurate. Given the relevance scores with differ-
ent parameter settings (Personal vs. Personal-S and TimeSense vs.
TimeSense-S), the accuracy of adaQAC-Batch slightly varies de-

pending on the accuracy of the relevance scores for the chosen pa-
rameter values.

The newly-discovered implicit negative feedback is promising in
boosting the accuracy of the existing static QAC models.

4.3 Parameter Study
Here we set the number of iterations and regularizer weight to

different values for the parameter study on the validation data. adaQAC-
Batch (TimeSense-S) is tested. The results for the other relevance
scores are similar.

Convergence: Fig. 4 (left) shows the evaluation measures against
the number of iterations. The results reinforce the fact that, adaQAC-
Batch converges quickly and the precise global optimum can be
reached within a constant number of iterations (§3.4.3).

Regularizer Weight: Fig. 4 (right) plots the evaluation mea-
sures of adaQAC-Batch (TimeSense-S) with regularizer weights
that are varied around the optimum 0.01. adaQAC-Batch is not
sensitive to different regularizer weights near the optimum. This
property shows that the accuracy of adaQAC-Batch has less depen-
dence on the chosen regularizer weight value.

4.4 Un-Personalized Learning and
Online Inference

Motivated by the more challenging cold-start scenario where there
is a lack of training data for new users, we evaluate the two adaQAC
extensions adaQAC-UnP (§3.5.1) and adaQAC-Online (§3.5.2).

For a user u, the un-personalized learning is performed by learn-
ing from training data related to all the users excluding u, and the
learned feature weights are fed into adaQAC-Online for u as the
initial feature weights. Neither adaQAC-UnP nor adaQAC-Online
uses the training data related to u.

Table 4 shows that, both adaQAC-UnP and adaQAC-Online sig-
nificantly and consistently boost the accuracy of static QAC for
each relevance score. The mean measure values of adaQAC-UnP
and adaQAC-Online are slightly lower than those of adaQAC-Batch
for the same relevance score. This slight difference can be justified
by the added benefits of the more expensive personalized learning
with batch inference of adaQAC-Batch.

It was pointed out that (§3.5.2), adaQAC-Online costs more stor-
age than adaQAC-UnP due to maintaining different weights for
all the users. The slight difference between the mean of the mea-
sure values of adaQAC-Online and adaQAC-UnP in Table 4 shows
that, adaQAC-Online trades its storage cost for slightly higher ac-
curacy than adaQAC-UnP. In addition to the benefits for addressing
the cold-start challenge, according to the cost analysis in §3.5.2,
an important practical implication from the results of Table 4 is,
adaQAC-UnP and adaQAC-Online can be good substitutes for the
more expensive adaQAC-Batch if time and storage budgets are lim-
ited in the real-world productions.



Table 4: Accuracy of adaQAC-UnP and adaQAC-Online in comparison with static QAC (in percentage). Boldfaced results denote
that the accuracy improvement over static QAC is statistically significant (p < 0.05) for the same relevance score. Both of the
adaQAC extension models significantly and consistently boost the accuracy of static QAC for each relevance score. For instance,
adaQAC-Online (MPC) significantly boosts static QAC (MPC) by 20.3% in MRR.

Relevance MRR SR@1 SR@2 SR@3
adaQAC-UnP adaQAC-Online adaQAC-UnP adaQAC-Online adaQAC-UnP adaQAC-Online adaQAC-UnP adaQAC-Online

MPC 60.60 (+19.7%) 60.92 (+20.3%) 54.54 (+33.9%) 55.06 (+35.1%) 62.75 (+20.6%) 62.99 (+21.1%) 66.01 (+13.6%) 66.11 (+13.8%)
Personal 69.80 (+12.9%) 70.22 (+13.5%) 62.27 (+21.4%) 62.98 (+22.7%) 72.76 (+13.7%) 73.06 (+14.1%) 76.64 (+9.0%) 76.77(+9.1%)
Personal-S 73.16 (+10.8%) 73.59 (+11.5%) 64.87 (+17.3%) 65.59 (+18.6%) 76.83 (+12.1%) 77.11 (+12.6%) 80.65 (+8.1%) 80.81 (+8.4%)
TimeSense 72.69 (+13.0%) 73.05 (+13.6%) 65.00 (+20.9%) 65.61 (+22.0%) 75.69 (+13.8%) 75.97 (+14.2%) 79.64 (+10.0%) 79.74 (+10.2%)
TimeSense-S 73.57 (+12.2%) 73.96 (+12.8%) 65.65 (+19.3%) 66.26 (+20.4%) 76.78 (+13.2%) 77.13 (+13.7%) 80.74 (+9.6%) 80.91 (+9.8%)

Figure 5: Box-and-Whisker plots of individual users’ MRR for static QAC, adaQAC-Batch, and adaQAC-Online with five relevance
scores. Each data instance is the corresponding MRR on one user. The minimum (bottom bar), quartiles (box edges), median (middle
of the box), and maximum (top bar) after removal of the detected outliers (empty circles) are depicted. adaQAC with more accurate
relevance scores are able to detect more outliers with the raised minimum bars.

4.5 Model Accuracy on Different Users
We study the model accuracy on different users using the Box-

and-Whisker plots. With each data instance being the MRR on one
user, Fig. 5 shows the minimum (bottom bar), quartiles (box edges),
median (middle of the box), maximum (top bar) after removal of
the detected outlier users (empty circles).

In general, model comparison using medians and quartiles of
MRR agrees with the results in Table 3—4 and reaffirms the boosted
accuracy by the added implicit negative feedback.

Note that, all the models perform poorly on a few users. Models
with the MPC relevance score fail to detect any outlier, and have
minimum bars close to 0. The other models still perform poorly
on certain users with MRR close to 0. These users are detected
as the outliers. The outlier users may behave inconsistently, sub-
mit rare queries, or the collected data related to them are noisy or
incomplete due to unknown reasons.

To explain, models with the MPC relevance have a larger MRR
variance (implied by a longer box in Fig. 5) so outlier users cannot
be easily detected. It is easier to see when comparing adaQAC-
Online (MPC) with Static (Personal): they have close medians but
the lower-variance Static (Personal) is able to detect a few outliers
and raise its minimum bar after their removal. When the relevance
score is more accurate with a lower variance, adaQAC is able to de-
tect more outliers thus raises the minimum bar by further improving
the MRR on the majority of the users.

Hence, even though the implicit negative feedback research is
promising, further research on more accurate relevance scores is
still required.

4.6 Varying-Length Prefix Study
Now we consider another challenging scenario where testing is

based on all possible prefixes in query compositions. Table 5 re-

ports MRR of static QAC, adaQAC-Static and adaQAC-Online for
prefixes with varying lengths at every keystroke in query composi-
tions. Both adaQAC-Batch and adaQAC-Online still significantly
and consistently boost the accuracy of static QAC under all prefix
lengths for each relevance score.

The MRR gap between adaQAC-Batch and adaQAC-Online is
subtle and both are more accurate when prefixes are of “middle”
lengths. That is, when the prefixes are short, the collected implicit
negative feedback features probably contain little useful informa-
tion to improve the re-ranking in Stage 2 of adaQAC (§3.1). When
prefixes get longer, more user-QAC interaction information is ob-
tained to make adaQAC more accurate in the adaptive re-ranking
stage. However, when prefixes are longer, the QAC problem be-
comes less challenging due to a reduction of the matched queries:
static QAC employing relevance scores are more accurate and it
is harder to further improve the accuracy, even though the implicit
negative feedback information may be richer.

4.7 Case Study
adaQAC has advantages over static QAC. We describe the fol-

lowing cases of Yahoo! Search, and hope that this work can inspire
ongoing studies in a broader research community.

Disambiguation: When users have clear query intent and pre-
fer disambiguated queries, adaQAC generally outperforms static
QAC. Typically, users may prefer queries of the form “entity name
+ attribute” to “entity name only”. Suppose a user wants to know
the showtime of lefont sandy springs. When the user composes the
query during the keystrokes “lefon”, the entity name “lefont sandy
springs” is the top suggestion. The user does not select it because
an entity name query may result in diverse search results. So, the
query “lefont sandy springs” receives implicit negative feedback.
When the prefix becomes “lefont”, “lefont sandy springs” is de-



Table 5: MRR of static QAC, adaQAC-Batch, and adaQAC-Online under prefixes with varying lengths at every keystroke in query
compositions (in percentage). Boldfaced results denote that the accuracy improvement over static QAC is statistically significant (p <
0.05) for the same relevance score and prefix length range. Both adaQAC-Batch and adaQAC-Online significantly and consistently
boost the accuracy of static QAC under all prefix lengths for each relevance score. For instance, adaQAC-Batch (MPC) significantly
boosts static QAC (MPC) by 17.1% in MRR under all prefix lengths.

Relevance Static adaQAC-Batch adaQAC-Online Static adaQAC-Batch adaQAC-Online Static adaQAC-Batch adaQAC-Online
1 ≤ Prefix Length≤ 3 4 ≤ Prefix Length≤ 6 7 ≤ Prefix Length≤ 9

MPC 21.76 22.66 22.52 33.64 38.67 (+15.0%) 38.40 (+14.1%) 41.60 52.21 (+25.5%) 52.13 (+25.3%)
Personal 29.34 30.31 30.10 45.41 49.52 (+9.1%) 49.38 (+8.7%) 49.81 56.34 (+13.1%) 56.19 (+12.8%)
Personal-S 31.60 32.59 32.36 50.14 53.38 (+6.5%) 53.30 (+6.3%) 53.94 58.69 (+8.8%) 58.57 (+8.6%)
TimeSense 29.98 31.94 (+6.5%) 31.91 (+6.4%) 47.75 52.61 (+10.2%) 52.65 (+10.3%) 52.48 58.63 (+11.7%) 58.46 (+11.4%)
TimeSense-S 30.93 32.69 32.59 49.27 53.69 (+9.0%) 53.67 (+8.9%) 53.65 59.19 (+10.3%) 59.14 (+10.2%)

10 ≤ Prefix Length≤ 12 Prefix Length≥ 13 All Prefix Lengths
MPC 47.28 55.13 (+16.6%) 54.82 (+15.9%) 55.12 59.28 (+7.5%) 58.94 (+6.9%) 38.19 44.72 (+17.1%) 44.43 (+16.3%)
Personal 52.16 57.79 (+10.8%) 57.33 (+9.9%) 56.59 59.93 (+5.9%) 59.32 46.67 51.75 (+10.9%) 51.20 (+9.7%)
Personal-S 55.21 59.33 (+7.5%) 58.77 (+6.4%) 58.40 60.85 60.16 49.83 54.30 (+9.0%) 53.66 (+7.7%)
TimeSense 54.91 59.43 (+8.2%) 59.06 (+7.6%) 58.49 61.08 60.54 48.59 53.77 (+10.7%) 54.01 (+11.2%)
TimeSense-S 55.73 59.83 (+7.4%) 59.37 (+6.5%) 58.97 61.29 60.76 49.48 54.47 (+10.1%) 53.95 (+9.0%)
*Static: Static QAC

moted by adaQAC and “lefont sandy springs showtime” gets pro-
moted.

Query Reformulation: When users prefer new queries when
reformulating older queries, adaQAC generally outperforms static
QAC. Suppose a user wants to query “detroit lions” after query-
ing “detroit red wings”. When the user reformulates the query
from “detroit red wings” to “detroit r” by consecutively hitting
Backspace, “detroit red wings” is ranked highest but the user does
not select it. So, the query “detroit red wings” receives implicit
negative feedback. Hence, when the prefix becomes “detroit” after
the user hits two more Backspace, “detroit red wings” is demoted
by adaQAC; some other queries, such as “detroit lions”, are pro-
moted accordingly.

Smoothing “Over-Sense”: Certain relevance scores may be sen-
sitive to specific signals: TimeSense is sensitive to time. Studies
showed users may have query intent for new or ongoing events [1,
16, 20]. In Yahoo! Search, we investigate the QAC results re-
sponded by the time-sensitive component. When a user wants to
query an earlier event “russia attack georgia”, the time-sensitive
QAC keeps ranking a more recent event “russia attack ukraine”
highest during keystrokes “russia att”. Instead, adaQAC receives
users’ implicit negative feedback to ‘russia attack ukraine” hence
demotes it, and raises “russia attack georgia” up to the top.

5. RELATED WORK
Query Auto-Completion (QAC): Numerous QAC models have

been developed in recent years, such as popularity-based QAC us-
ing historical frequency counts [2], time-based QAC using time in-
formation [32, 35], context-based QAC using previous query infor-
mation of users [2], personalized QAC learning from user profile
information [31]. The relevance scores investigated in our work
make use of the existing research, such as MPC [2, 15, 21, 31],
Personal(-S) [2, 5, 31], and TimeSense(-S) [5, 32, 35, 27]. More
recent QAC methods also predicted the probability that a suggested
query would be clicked by users based on user models [18, 21],
determined suggestion rankings based on query reformulation pat-
terns [15], or combined information such as time and previous
queries from users [5]. Furthermore, user interactions with QAC
just began to be explored. Mitra et al. discussed user-QAC in-
teractions from perspectives such as word boundaries, fraction of
query typed, and keyboard distance [26]. Hofmann et al. identified
common behavior patterns of user-QAC interactions [11].

Other aspects of QAC have also been studied, such as space ef-
ficient indexing [13] and spelling error toleration [6, 14, 8, 36].

However, none of the aforementioned work aimed at inferring
implicit negative feedback from user-QAC interactions, or adapting
QAC to such feedback. We take these initiatives and show that
QAC can adapt to implicit negative feedback and be more accurate.

Negative Feedback: Relevance feedback is useful for improv-
ing information retrieval models, but further improving it using
negative feedback was considered challenging [30, 25]. Recently,
more efforts on negative feedback research was made in document
retrieval tasks. Wang et al. found negative relevance feedback
useful to improve vector-space models and language models [34].
Hong et al. proposed a hierarchical distance-based measure to dif-
ferentiate the opposite intent from the true query intent [12]. Zhang
and Wang studied language models with negative feedback through
positive and negative document proportion on query classification
[39]. New models using negative relevance feedback were also
developed in TREC [22]. In particular, negative feedback was also
found useful to retrieve documents for difficult queries [33, 17, 24].

However, these negative feedback studies focus only on docu-
ment retrieval tasks. The richer interaction information, presented
in the QAC settings, such as dwell time and positions, is not avail-
able in general document retrieval settings.

Dynamic IR: Recent work have gone beyond existing IR tech-
niques to incorporate dynamics in session search [9, 23]. In this
task, added or removed terms compared with the other queries of
the same search session will update term weights to retrieve docu-
ments for the completed query [9, 23]. There are important differ-
ences between such research and ours. First, search and QAC are
different problems. Second, adaQAC emphasizes adapting dynam-
ics over a single query composition rather than multiple queries
over a search session. Third, adaQAC does not assign weights to
characters, prefixes or terms of a query. Other dynamic IR work
was surveyed in a tutorial by Yang et al. [37].

6. CONCLUSIONS
We studied interactions between users and QAC where users im-

plicitly express negative feedback to suggested queries. Under the
more general “(static) relevance–(adaptive) implicit negative feed-
back” framework, our proposed adaQAC model can reuse the exist-
ing static QAC research and adapt QAC to implicit negative feed-
back using personalized learning with batch inference. Extensions
with un-personalized learning and online inference were also pre-
sented. We collected user-QAC interaction data from a commercial
search engine. Large-scale empirical results showed that implicit



negative feedback significantly and consistently boosts the accu-
racy of the investigated static QAC models.
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APPENDIX
A. INFERENCE FOR ADAQAC-BATCH

Let f
[
φ(t)(u)

]
be the objective function in Equation 6, where

φ(t)(u) is the value of φ(u) at the t-th iteration,

φ
(t+1)

(u) = φ
(t)

(u)− η∇f
[
φ

(t)
(u)
]
, (7)

where

∇f [φ(u)] =

[
∂f [φ(u)]

∂φ1(u)
,
∂f [φ(u)]

∂φ2(u)
, . . . ,

∂f [φ(u)]

∂φl(u)

]>
, (8)

and ∀i = 1, 2, . . . , l,

∂f [φ(u)]

∂φi(u)
=

∑
c∈C(u)

S1

S2

− x

(
K(c)

)
i

(
u, q
∗
(c), c

)
+ λφi(u), (9)

where by denoting exp

[
r(k)(u, q, c) + φ>(u)x

(
K(c)

)
(u, q, c)

]
as E(q),

S1 =
∑

q∈Q(k)(r,u,c,N)
⋃
{q∗(c)}

E(q)x

(
K(c)

)
i (u, q, c),

S2 =
∑

q∈Q(k)(r,u,c,N)
⋃
{q∗(c)}

E(q).

(10)

In the experiments, φ(0)(u) in Equation 7 is randomly sampled
from:

φ
(0)

(u) ∼ Uniform(0, 0.01).

B. INFERENCE FOR ADAQAC-ONLINE
The feature weight φ(0)(u) is initialized as the un-personalized

learning weight (§3.5.1). After each query composition c, the fea-
ture weight is updated as in Equation 7—10 with Equation 9 re-
placed by

∂f [φ(u)]

∂φi(u)
=
S1

S2

− x

(
K(c)

)
i

(
u, q
∗
(c), c

)
+ λφi(u),

and η is discounted by a factor of 0.9 after each update as an an-
nealing procedure [19].


