
Relation Extraction using Multi-Encoder LSTM
Network on a Distant Supervised Dataset

Siddhartha Banerjee
Yahoo!

Sunnyvale, CA, USA

siddb@yahoo-inc.com

Kostas Tsioutsiouliklis
Yahoo!

Sunnyvale, CA, USA

kostas@yahoo-inc.com

Abstract—Relation extraction techniques are used to find
potential relational facts in textual content. Relation Extraction
systems require huge amount of training data to model semantics
of sentences and identify relations. Distant supervision, often used
to construct training data for relation extraction, produces noisy
alignments that can hurt the performance of relation extraction
systems. To this end, we propose a simple, yet effective, technique
to automatically compute confidence levels of alignments. We
compute the confidence values of automatically labeled content
using co-occurrence statistics of relations and dependency pat-
terns of aligned sentences. Thereafter, we propose a novel multi-
encoder bidirectional Long Short Term Memory (LSTM) model
to identify relations in a given sentence. We use different features
(words, part-of-speech (POS) tags and dependency paths) in
each encoder and concatenate the hidden states of all the
encoders to predict the relations. Our experiments show that
a multi-encoder network can handle different features together
to predict relations more accurately (~9% improvement over a
single encoder model). We also conduct visualization experiments
to show that our model learns intermediate representations
effectively to identify relations in sentences.

I. INTRODUCTION

Relation extraction, a text classification task, is used to
identify the relation between a pair of entities mentioned in
a span of text. Relation extraction has been found to be very
effective in expanding knowledge-bases automatically as well
as in Question Answering (QA). Manually generating training
examples (sentences and corresponding relation labels) for
the ever-increasing number of relations in Knowledge-Bases
(KB’s) such as Wikidata or Freebase is time-consuming and
expensive. As a result, distant supervision has emerged as a
popular technique to automatically construct training data for
relation extraction learning tasks. The underlying assumption
of all distant supervision techniques is the following: If two
entities are connected by a relation, a sentence that contains
both the entities must describe the same relation. However,
such techniques suffer from the noisy data problem as the
aligned pairs of relation triples from KB’s and sentences often
contain erroneous alignments.

Recently, several neural network-based techniques have
been proposed to address the problem of relation extraction.
Neural network-based techniques are capable of automatically
learning representations of sentences containing entity pairs
and predicting relations in the text. Most of the techniques [1],
[2] have been developed using Convolutional Neural Networks
(CNN) [3] as the underlying learning structures. However,
a recent analysis [4] shows that Recurrent Neural Networks

(RNN) generally perform better than CNN’s on relation ex-
traction tasks. To the best of our knowledge, all the above
mentioned techniques consider only the word sequences in
the sentences as inputs to the network. However, a number of
other features can potentially be used to augment word features
such as information from Named-Entity Recognition (NER),
dependency paths and Part-Of-Speech (POS) tags.

In this work, we address the above mentioned concerns.
First, we build a distant supervised dataset for relation extrac-
tion by mapping triples from DBPedia [5] and sentences from
Wikipedia. To reduce the effect of noisy labels, we compute
confidence values for the samples based on co-occurrence
statistics of dependency paths in the sentences and relations.
We use the confidence values as sample weights during model
training allowing the models to automatically adjust parame-
ters depending on importances of individual data instances.
Second, we propose MEM (Multi-Encoder Model) that uses
three simultaneous Long-Short Term Memory (LSTM)1 [6]
units to encode information using features from words, POS
tags and dependency paths of the sentences. The hidden states
from each of the encoders are concatenated and used to predict
the relation using softmax activation [7].

We conduct several experiments to evaluate the effectiveness
of our proposed techniques. First, we compute the accuracy
of MEM on test instances and compare it to a simple LSTM
model that encodes information only from sequences of words.
Our experiments show that MEM achieves ~9% improvement
over a single LSTM encoder model in terms of accuracy.
Second, we visualize final hidden layer representations using
T-SNE [8] to show that the model is able to differentiate
between different relations appropriately.

II. PROPOSED APPROACH

In this section, first, we describe our approach to automati-
cally construct training data using distant supervision followed
by computing confidence values of each sample using co-
occurrence statistics. Next, we provide details on our MEM
model used to classify relations.

A. Automatic Training Data Construction
Distant supervision has been successfully used for many

relation extraction tasks. In DeepQA [9], researchers used
distant supervision successfully by aligning relations from
DBPedia [5] with sentences from Wikipedia articles. DBPedia

1LSTM is a specific type of a RNN cell.

235

2018 12th IEEE International Conference on Semantic Computing

0-7695-6360-0/18/$31.00 ©2018 IEEE
DOI 10.1109/ICSC.2018.00040

Fig. 1: Dependency graph obtained using Stanford CoreNLP

(or any other Knowledge Base (KB)) consists of triples
mentioning relations between pairs of entities. Any triple
can be represented as (e1, e2, rel) where e1 and e2 are two
entities related by a relation rel. For example, the following
DBPedia triple: (Square Shells, Kurt Vile, artist) represents the
information that the entities Square Shells and Kurt Vile are
related by an artist relationship. DBPedia triples are retrieved
from Wikipedia infoboxes2. Naturally, there is a high chance
of the relation between the entities being explicitly stated in the
content of the Wikipedia article. For example, the first sentence
of the Wikipedia article on Square Shells is as follows:

Square Shells is a limited edition EP by American indie rock
musician Kurt Vile, released on May 24, 2010 on Matador
Records.

The sentence contains both the entities in the triple. Therefore,
it can be aligned to the specific triple from DBPedia. We
create a distant supervised dataset by aligning sentences and
corresponding relation triples. Following DeepQA [9], we
align the first sentence in the Wikipedia article that contains
both the entities3. However, sentences containing the two
entities might not always represent the correct relation as
described in the KB. For example, consider another triple
(Dalpat Singh Paraste, Shahdol, birthPlace). The first sentence
in Wikipedia that contains both the entities is the following:

Dalpat Singh Paraste (30 May 1950 – 1 June 2016) is four
times MP from Shahdol.

Clearly, the above sentence and triple pair should not
be aligned. Manually removing such erroneous labels is
time-consuming and costly. Therefore, it is necessary to
automatically judge confidence levels of the alignments.

Co-occurrence based confidence computation: Consider the
following sentence:

DJ Harvey is a DJ born in London, England.

aligned to the triple: (DJ Harvey, London, birthPlace). The
dependency parse for the above mentioned sentence is shown
in Figure 1. We use three information elements from the
dependency graph:

1) Root node [In the example, the word DJ]
2) Path to e1 [<l-nsubj>]
3) Path to e2 [<r-acl>→ born → <r-nmod:in>]

We include indicators l and r (left and right) in the paths
to differentiate between path elements to e1 and e2. We
formulate a strategy using dependency patterns to generate
confidence scores for our alignments. Let us consider the
following case where an entity e1 was both born and had
died in the same location e2. The sentence: e1 was born in e2

2https://en.wikipedia.org/wiki/Help:Infobox
3We also use Wikipedia internal links to augment information on entities

and increase coverage of alignments.

will be aligned to both relations birthPlace and deathPlace,
with the second alignment being erroneous. Our confidence
computation should assign a high value to the first alignment
and a very low value to the second.

Let us represent the set of combined information elements
as depelem and freq(depelem) as the total frequency of the
dependency element. In the example above, the depelem can
be represented as (< l−subj >,DJ,< r−acl >→ born→<
r−nmod : in >) by concatenating all the components of the
dependency graph we are interested in. We want to compute
the probability of a relation rel given a specific depelem.

p(rel|depelem) =
freq(rel, depelem)

freq(depelem)
(1)

As shown in Equation 1, freq(rel, depelem) refers to the co-
occurrence frequency of relation rel and depelem. In other
words, it refers to the number of sentences where the de-
pendency depelem exists between two entities related via
relation rel. We can compute the confidence distribution of the
relations given depelem as shown in Table I. As can be seen,
it is highly likely that with the specific depelem above, the
birthPlace relation and their corresponding alignments (that
includes the verb born) are the most reliable, while the other
relations have minimal confidence scores. We store the values
of freq(rel, depelem) and p(rel|depelem) along with each
alignment.

Relation Frequency Confidence
deathPlace 3 0.05
residence 2 0.04
birthPlace 61 0.85
nationality 1 0.02
hometown 2 0.04

TABLE I: Confidence values of different relations for a
specific depelem.

B. MEM: Multi-Encoder Model
Our proposed neural network architecture, MEM, to predict
relations from text is shown in Figure 2. As can be seen from
the figure, MEM uses three encoders to encode information
from three feature sequences. An RNN with Long-Short
Term Memory units (LSTMs) [6] is applied to consecutively
process the sequential inputs. More specifically, we used the
bidirectional LSTM [10] cell as it performed better than the
regular LSTM cell. We encode the following sequences:

1) Dependency features: The dependency element ob-
tained earlier using the parse is fed as a sequence to
the encoder. We create the sequence by concatenating
the path to e1, the root word, and the path to e2 in
order as shown earlier.

2) Word features: We include sequence of words between
the entities in the sentence as inputs for processing in
the second LSTM encoder. We use an embedding layer
over this to convert the raw word indices to distributed
representations.

3) POS features: We include sequence of POS tags of the
words between the entities in the sentence as inputs for
processing in the third LSTM encoder.

236

Fig. 2: Multi-Encoder Model to predict relations from text.

The final cell states of the LSTM encoders are combined
(using concatenation) to create a combined cell state. There-
fore, if c1, c2 and c3 are the three cell states from the first,
second and third encoder respectively, the combined state C
is obtained by concatenating the three representations together
in the following manner:

C = [c1, c2, c3] (2)

We restrict each sequence to a maximum of 10 elements.
Sequence elements that are closer to the entities in the sentence
have been found to be more important for relation determina-
tion [1]. Therefore, for longer sequences (>10 elements), the
first and the last 5 elements were used to train the model.
Softmax activation function [7] was used in the final dense
layer to predict the relations. We also use the confidence values
computed during the training data generation phase by feeding
them as sample weights when training the model using a
categorical cross-entropy loss function [11]. Furthermore, due
to the imbalanced nature of our dataset, we apply balanced
class weighting to avoid bias when training the model.

In addition to the regular MEM model, we also explored a
modified model with attention (we will refer to the model
as MEM-ATT) following a soft-attention mechanism [12].
Both our models are fairly flexible as a number of different
sequential features can be combined together to produce a
comprehensive representational state that can learn to predict
relations effectively.

III. EXPERIMENTAL RESULTS

In this section, we describe our dataset characteristics fol-
lowed by the results of our experiments.

A. Dataset characteristics:

We align triples from DBPedia4 and Wikipedia 5 to obtain
a total of 758,662 alignments. We normalized all entities
retaining entity types (PERSON, ORGANIZATION, etc.)6 and
proper nouns (as NNP tokens) in the dataset. The alignments
resulted in a total of 483 unique relations. In this paper,
we only consider the 100 most frequent relations. All the
remaining relations are grouped into a separate “NA” class.
The top 100 relations contribute 95.9% records of the dataset.

4DBPedia version dated 2016-10
5Wikipedia dump as of 20 April, 2017.
6Entity types detected by the Stanford NER tagger.

We randomly split the dataset into 70, 20, 10 percent to create
the training, validation and test sets respectively.

Model Accuracy@1 Accuracy@5
MEM 72.62 94.27
MEM-ATT 72.44 94.27
MEM-BASIC 71.11 91.48
S-LSTM 63.89 91.26

TABLE II: Performance comparison of various models on the
relation classification task.

B. Comparison between models

General settings: For the embedding layers, we use 300
dimensional Glove embeddings [13] to initialize the word
vectors. We used a vocabulary size of 30000 words7. We used
the Keras framework8 to implement the neural networks.
Models: We compare the performance of our proposed tech-
niques with the following two baseline models:

1) S-LSTM: Single bidirectional LSTM encoder that en-
codes only sequences of words between the entities.

2) MEM-BASIC: Multi-encoder model similar to MEM,
without using confidence weights.

The results of relation classification on the test instances are
shown in Table II. We show the accuracy at two levels (1 and
5). Accuracy@1 implies the percentage of test instances where
the model predicts the relation correctly. Accuracy@5 implies
the percentage of test instances where the model predicts the
correct relation among the top 5 most probable classes. As can
be seen from the table, MEM performs better than the other
models. MEM-ATT (with attention) performs slightly worse
than MEM. However, accuracy@5 is the same for both MEM
and MEM-ATT implying that both the models can figure out
the correct relation among their top 5 predictions in ~94%
of the cases. Both MEM and MEM-ATT perform signifi-
cantly better than S-LSTM (~9% improvement in accuracy@1)
showing that the multi-encoder network is able to capture the
semantics from multiple types of features more effectively than
a single bidirectional encoder model. Furthermore, differences
with MEM-BASIC show that using confidence values boosts
up the accuracy as the parameter training is more effective
with sample weights.
Heldout dataset: We randomly sampled 1000 examples (with
82 unique relations) from our test set and obtained editorial
judgments. 881, 53 and 66 were marked as yes, no and maybe,
respectively. We obtain an accuracy of 91.5% using the MEM
model on the 881 (yes) instances showing that the model has a
very high accuracy on the manually tagged true examples. The
MEM-BASIC model produces an accuracy of 89.4% (~2.3%
reduction compared to MEM) on this dataset indicating that
using sample weights is beneficial for parameter learning for
this model.

C. Visualizing hidden representations

The ability of a model can be realized from the repre-
sentations learned by the final hidden layer of the network.

7This includes the tokens from the dependency path and POS tags.
8https://keras.io/

237

(a) 2 relations with thresholds. (b) 2 relations without thresholds. (c) 10 relations with thresholds. (d) 10 relations without thresholds.

Fig. 3: T-SNE scatter plots. In (a) and (b), instances of relations team (orange) and birthPlace (blue) are shown. In (c) and (d),
the 10 most frequent relations [birthPlace, country, isPartOf, location, deathPlace, team, nationality, city, state, hometown] in
the test set are shown.

Therefore, we create a truncated version of MEM by removing
the last activation (softmax) layer and load the model with the
trained weights. Thereafter, we predict the hidden layer rep-
resentations9 for the test instances with the truncated model.

We use Principal Component Analysis (PCA) [14] to reduce
the dense layer representation to 50 dimensions and then use
T-SNE to further reduce it to 2 dimensions to visualize the
final representations as shown in Figure 3. In Figures 3a
and 3b, we show the T-SNE output of the instances labeled
with their actual relation labels (birthPlace (blue) and team
(orange)). Figure 3b shows the T-SNE output for all the
test instances belonging to both the above mentioned classes.
By contrast, 3a shows the features corresponding to test
instances that are more confident. We filter test instances using
p(rel|depelem) >= 0.5 and freq(rel, depelem) >= 20. As
can be clearly seen, the T-SNE features are well separated
in 3a compared to 3b. Our proposed model MEM has been
able to learn representations accurately to separate the two
relations. Furthermore, the model performs much better on in-
stances having higher confidence values implying that sample
weighing is effective. We also show the T-SNE output with the
test instances belonging to the top 10 most frequent sections.
Figure 3c shows the output with the more confident instances.
As can be clearly seen, the predicted representations (reduced
to 2D-space) of the final layer are better separated compared
to Figure 3d (contains all instances without thresholds).

In the future, we plan to explore further on this dataset using
human editorial judgments on the generated instances and
compare with other CNN-based techniques that are currently
used for relation extraction.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a multi-encoder bidirectional
LSTM-based model, MEM, that can encode information from
multiple feature sequences to predict relations. We also de-
scribed a simple co-occurrence based strategy to compute
confidence scores for training instances obtained using distant
supervision. We use the confidence scores as sample weights
to train the model. We conduct experiments to show that our

9The representations are 1800 dimensional – 300 (embeddings) * 2 (bidi-
rectional) * 3 (encoders)

multi-encoder model is more effective than a single-encoder
model in terms of accurately classifying relations in the text.
Furthermore, we also perform visualization experiments using
T-SNE and show that the representations learned by our model
can differentiate instances belonging to different relations. In
the future, we plan to combine CNN and LSTM networks to
investigate new models for relation extraction.

REFERENCES

[1] T. H. Nguyen and R. Grishman, “Relation extraction: Perspective from
convolutional neural networks.” in VS@ HLT-NAACL, 2015, pp. 39–48.

[2] Y. Lin, S. Shen, Z. Liu, H. Luan, and M. Sun, “Neural relation extraction
with selective attention over instances.” in ACL (1), 2016.

[3] Y. LeCun, Y. Bengio et al., “Convolutional networks for images, speech,
and time series,” The handbook of brain theory and neural networks,
vol. 3361, no. 10, p. 1995, 1995.

[4] D. Zhang and D. Wang, “Relation classification: Cnn or rnn?” in Inter-
national Conference on Computer Processing of Oriental Languages.
Springer, 2016, pp. 665–675.

[5] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. Ives,
“Dbpedia: A nucleus for a web of open data,” The semantic web, pp.
722–735, 2007.

[6] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[7] R. A. Dunne and N. A. Campbell, “On the pairing of the softmax
activation and cross-entropy penalty functions and the derivation of the
softmax activation function,” in Proc. 8th Aust. Conf. on the Neural
Networks, Melbourne, 181, vol. 185, 1997.

[8] L. v. d. Maaten and G. Hinton, “Visualizing data using t-sne,” Journal
of Machine Learning Research, vol. 9, no. Nov, pp. 2579–2605, 2008.

[9] D. Ferrucci, E. Brown, J. Chu-Carroll, J. Fan, D. Gondek, A. A.
Kalyanpur, A. Lally, J. W. Murdock, E. Nyberg, J. Prager et al.,
“Building watson: An overview of the deepqa project,” AI magazine,
vol. 31, no. 3, pp. 59–79, 2010.

[10] A. Graves, S. Fernández, and J. Schmidhuber, “Bidirectional lstm net-
works for improved phoneme classification and recognition,” Artificial
Neural Networks: Formal Models and Their Applications–ICANN 2005,
pp. 753–753, 2005.

[11] E. S. Soofi, “Principal information theoretic approaches,” Journal of the
American Statistical Association, vol. 95, no. 452, pp. 1349–1353, 2000.

[12] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” ICLR, 2014.

[13] J. Pennington, R. Socher, and C. Manning, “Glove: Global vectors
for word representation,” in Proceedings of the 2014 conference on
empirical methods in natural language processing (EMNLP), 2014, pp.
1532–1543.

[14] S. Wold, K. Esbensen, and P. Geladi, “Principal component analysis,”
Chemometrics and intelligent laboratory systems, vol. 2, no. 1-3, pp.
37–52, 1987.

238

