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ABSTRACT 

Ad-servers have to satisfy many different targeting criteria, and 

the combination can often result in no feasible solution. We 

hypothesize that advertisers may be defining these metrics to 

create a kind of “proxy target”. We therefore reformulate the 

standard ad-serving problem to one where we attempt to get as 

close as possible to the advertiser’s multi-dimensional target 

inclusive of delivery. We use a simple simulation to illustrate the 

behavior of this algorithm compared to Constraint and Pacing 

strategies. The system is then deployed in one of the largest video 

ad-servers in the United States and we show experimental results 

from live test ads, as well as 6 months of production performance 

across hundreds of ads. We find that the live ad-server tests match 

the simulation, and we report significant gains in multi-KPI 

performance from using the error minimization strategy1. 
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1 INTRODUCTION 

A common problem for ad-servers is to deliver as much value as 

possible within budget [10], [13]. However, in practice, 

advertisers routinely add a wide range of other “Key Performance 

Indicators” (KPI) that the campaign must meet. For example, the 

Internet Advertising Bureau (IAB) in 2014 has introduced an 

industry standard, that impressions should be at least 70% 

viewable for billing to occur [8]. Advertisers may also request that 
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at least 50% of impressions for which they’re charged be in the 

preferred age-gender category. Levels of bot activity usually need 

to remain below a particular threshold such as 5%. Advertisers 

may also require that the ad be viewed to completion at least 50% 

of the time.  

These KPIs are usually handled in practice by adding them as 

constraints to the ad-serving problem. However in many cases, the 

desired combination of key performance indicators may either be 

infeasible, or so severely restrict delivery, as to afford little reason 

to engage with the overhead of running a campaign. 

We propose an alternative framework in which the objective is 

to minimize the vector of constraint error. The resulting system 

appears to show good behavior on real-world ad-serving problems 

in which multiple KPIs are common. We test the system in 

simulation as well as real auction conditions. 

2 CANONICAL AD SERVING PROBLEM 

Consider an advertiser that has a budget 𝐵 and wishes to spend it 

on an ad auction across 𝑇 discrete periods of time. There are 𝐼𝑡 

impressions in each period 𝑡. Given an offered bid price 𝑏𝑖,𝑡
∗
 for 

an incoming impression, the advertiser will “win” the impression 

at a rate given by 𝑊(𝑏𝑖,𝑡
∗) and assuming a Generalized Second 

Price auction, be charged a clearing price equal to the second 

bidder’s bid plus 1 penny, 𝑏𝑖,𝑡 = 0.01 + 𝑏𝑗,𝑡: max 𝑏𝑗,𝑡 ≤ 𝑏𝑖,𝑡
∗: 𝑗 ≠

𝑖. The probability of the impression producing KPI event k will 

equal 𝑣𝑖,𝑡
𝑘. The KPI rate and budget required per time period are 

𝑉𝑡
𝑘 and 𝐵𝑡, with 𝐵0 indicating the original rate required prior to 

the start of bidding at time 𝑡 = 0. The task for the ad-server is to 

set offering bid prices 𝑏𝑖,𝑡
∗
 for every impression such that the 

value events 𝑣𝑖,𝑡
𝑘 are maximized. The definition for this problem 

has been described in much prior work [1, 7, 9]: 

𝑏𝑖,𝑡
∗: 𝐦𝐚𝐱 ∑ ∑ 𝑊(𝑏𝑖,𝑡

∗) ∙ 𝑣𝑖,𝑡
𝑘

𝐼𝑡

𝑖=1

𝑇

𝑡=1

 (1) 

where the spend is lower than a budget constraint. 

∑ ∑ 𝑊(𝑏𝑖,𝑡
∗) ∙ 𝑏𝑖,𝑡

𝐼𝑡

𝑖=1

≤ 𝐵 (2)

𝑇

𝑡=1

 

Ad-servers also typically include a “smooth delivery” constraint 

[23, 31]. It is usually considered unacceptable for an ad-server to 

expend all of its budget in the first hour, and so some constraints 
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are added to ensure that budget is spread over the full set of time 

periods: 

|∑ 𝑊(𝑏𝑖,𝑡
∗) ∙ 𝑏𝑖,𝑡

𝐼𝑡

𝑖=1

− 𝐵𝑡| ≤ 𝐽(3) 

Most ad-servers support “performance criteria” that the price paid 

per event not exceed an advertiser-defined 𝐶𝑃𝐴𝑘  price such as 

Cost Per Click (CPC), Cost Per Acquisition (CPA), Cost Per 

Viewable (CPV), or Cost per Dollar generated (ROAS) [11, 13]. 

We define that as follows: 

∑ ∑ 𝑊(𝑏𝑖,𝑡
∗) ∙ 𝑏𝑖,𝑡

𝐼𝑡
𝑖=1

𝑇
𝑡=1

∑ ∑ 𝑊(𝑏𝑖,𝑡
∗) ∙ 𝑣𝑖,𝑡

𝑘𝐼
𝑖=1

𝑇
𝑡=1

≤ 𝐶𝑃𝐴𝑘  (4) 

Advertisers routinely add additional KPI requirements for their 

campaigns including Viewability Rate, Completion Rate, In-

Target Rate, Clickthrough Rate, and so on. We therefore have 

constraint equations [6]: 

∑ ∑ 𝑊(𝑏𝑖,𝑡
∗) ∙ 𝑣𝑖,𝑡

𝑘𝐼𝑡
𝑖=1

𝑇
𝑡=1

∑ ∑ 𝑊(𝑏𝑖,𝑡
∗)

𝐼𝑡

𝑖=1
𝑇
𝑡=1

≥ 𝑉𝑘  (5) 

 

3 STANDARD CONTROL SOLUTION 

There have been several published solutions to the above problem 

[1,10,13,14,17,23,31,32]. In general the problem is approached as 

a control systems problem (Figure 9) where the plant is 

considered the auction and bid price is the actuator. 

3. Impression KPI 

Predictor

5. Bid calculator 

(Actuator)

6. Ad Auction

(Plant)
1. Budget & CPX

Controller

8. KPI Event detection

(Sensor)

7. Budget deduction 

(Sensor)

Reference 

budget signal

B/T

vi,k

v,ki*

bi
*

bi

i

2. Ad request

i

9. Ad

Wi*bi

KPI event 

(eg. view event, 

completion event, 

click event, 

conversion event)

vi,k

Vk
*

’
vi,k

*

bnom

Vk

Reference 

KPI signal

Vk
*

4. Discard imps not 

meeting constraints

4. Decline to bid 

signal (bi=0)

Vk

vi,k<Vk ?

 

Figure 9: Standard advertising control system. 

The system executes the following control loop: 

Step 1: Receive a request for ads (Figure 9-2): Let there be a 

request i from a publisher for ads. 

Step 2: Evaluate K “impression valuation models” (Figure 9-3): 

Predict the probability of the impression producing any of the K 

events that the advertiser is interested in 𝑣𝑖
𝑘∗

 (5) such as 

viewability, click and conversion [13, 21]. 

Step 3: Filter Traffic not meeting Constraints (Figure 9-4): If the 

impression fails any of the requirements defined by the advertiser 

(equation 6) then discard the traffic by setting bid price to zero: 

If ∃𝑘: 𝑣𝑖
𝑘 < 𝑉𝑘 then 𝑏𝑖

∗ = 0    (6) 

Step 4: Calculate the bid price required for smooth delivery 

(Figure 9-5): Let 𝑏𝑖
𝑃

 be the bid such that the expected spend will 

be as close as possible to the desired spend 𝐵𝑡. Some authors do 

this by setting a participation rate [1, 10, 17, 31, 32]. Other 

authors [13] set the bid price directly to throttle. In both cases, the 

decision variable ultimately is factored into the bid price. The 

approaches for estimating bid also vary from direct auction 

modeling [13] to MIMD controllers [33]. In this paper we present 

a direct modeling approach. Let 𝑊(𝑏𝑖) = 𝑀(𝑏𝑖,, 𝜃, 𝑡)  be a 

function mapping the bid price, time, and parameters, to the 

expected probability of win, and 𝐼𝑡
∗ a prediction of the number of 

impressions in this time period. We can select the bid price that 

minimizes the difference below: 

𝑏𝑖
𝑃 = 𝑏𝑖: min|𝑏𝑖 ∙ 𝐼𝑡

∗ ∙ 𝑀(𝑏𝑖 , 𝜃, 𝑡) − 𝐵𝑡|  (8) 

Step 5: Calculate the maximum bid price bi for achieving the CPA 

control signal (Figure 9-5): In general bid price is calculated by 

setting bid price as below; this is called “CostMin” by Karlsson 

[9]: 

𝑏𝑖
𝑘 = 𝑣𝑖

𝑘∗
∙ 𝐶𝑃𝐴𝑡

𝑘 = (𝑣𝑖
𝑘∗

/𝑉𝑡
𝑘) ∙ 𝑏𝑖

𝑃(9) 

Step 6: Set final bid to the lower of the pacing price and the KPI 

bid price: This is required due to the nature of the constraint 

boundaries: if 𝑏𝑖
𝑘 > 𝑏𝑖

𝑃
 then this will drop the expenditure to the 

pacing price. If 𝑏𝑖
𝑃 > 𝑏𝑖

𝑘
 then 𝑏𝑖

𝑘
is already at the CPA limit per 

equation (4), and so increasing the bid further is impossible since 

it would violate the CPA constraint. This is “a feature – not a bug” 

of using constraints. 

𝑏𝑖
∗ = min(𝑏𝑖

𝑘 , 𝑏𝑖
𝑃)  (9.2) 

Step 7: Submit bid price to the auction (Figure 9-6) 

Step 8: Deduct the budget (Figure 9-7) and update the KPI 

counters (Figure 9-8): If the ad’s bid was successful in winning 

the auction, then deduct the clearing bid price 𝑏𝑖  from the ad’s 

budget 𝐵 = 𝐵 − 𝑏𝑖 . If an external KPI event is detected then 

accrue the KPI counters Vk = Vk’+1. 

Step 9: Update the control targets including (Figure 9-1 and 4-2): 

Update the new control variables, Budget 𝐵𝑡+1, Constraint goals 

𝐶𝑃𝐴𝑘
𝑡+1 and KPI targets 𝑉𝑘

𝑡+1. A PI Controller can be defined 

per below for recent time periods as well as all time periods [32]. 

Karlsson [10] use an alternative approach of deriving full control 

system plant equations. However this approach requires a fixed 

analytic function for impressions. Real-time bidding exchange 

inventory is volatile, and so the model-less PI control approach is 

more commonly used. 

𝑉𝑡+1
𝑘 =

∑ 𝐼𝜏 ∙ 𝑉𝜏
𝑘

𝜏∈1..𝑇 − ∑ 𝐼𝜏 ∙ 𝑉𝜏
𝑘

𝜏∈1..𝑡

𝐼𝑡+1
 ;     (10) 

𝐵𝑡+1 =
𝐵 −∑ 𝐼𝜏∙𝐵𝜏𝜏∈1..𝑡

𝐼𝑡+1
  ; 𝐼𝑡+1 =

𝐼∗−∑ 𝐼𝜏𝜏∈1..𝑡

𝑇−𝑡
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4 REFORMULATING THE PROBLEM 

The problem with using the standard problem definition is that 

when realistic advertiser KPI constraints are incorporated such as 

Viewable Rate > 70% and Clickthrough Rate > 1%, it often leads 

to no feasible solution (Figure 1). It is useful to step back and try 

to understand why these constraints are being added in the first 

place. Why would advertisers need to specify a “laundry list” of 

constraints anyway? If the advertiser is trying to obtain 

acquisitions, for example, what care they, for the bot rate, 

viewability rate, completion rate, or any of the other KPIs? 

There are several real-world factors that are driving 

advertisers to specify KPIs: Firstly standards are now being used 

by the industry that mandate that these are achieved for the traffic 

to be billable. There is now a 70% viewability requirement [8]. 

Secondly, this may be an unavoidable product of the 

advertisers solving a complex estimation problem. Advertisers 

ultimately want conversion events, but estimating the probability 

of purchase on each impression may be sparse, custom, or even 

not practical on the advertising platforms that they’re using. They 

may therefore need to use “high velocity” key performance 

indicators (KPIs) that are exposed by the ad-server as a “proxy” 

for what the economically valuable event that they are trying to 

generate. As a result, the multiple KPIs are used by the advertiser 

to describe the kind of traffic that they believe have a high 

probability of purchase. 

In this paper we propose a new formulation which is both 

feasible, and where the objective is to minimize constraint error 

across multiple KPIs. In order to do this, we propose a 

modification to the standard control system (Figure 9): the 

addition of a new component that we call a KPI Controller 

(Figure 10-1). This mechanism will attempt to calculate a bid 

price that minimizes error over the vector of KPIs. The KPI 

Controller will attempt to keep the performance of the KPIs as 

close as possible to their reference signal of the multi-dimensional 

KPI signal that the advertiser has defined as their target. 

After adding the KPI Controller to maintain KPIs close to the 

advertiser’s target, we will also remove the hard constraint step 

that just discarded traffic if it failed to meet the KPI targets 

(Figure 9-3). The steps of the new control system become: 

 

1. Receive a request to deliver an ad. 

2. Execute the K valuation models to predict the probability 

of this impression eliciting any of the KPI events that are 

of interest to the advertiser. 

3. Don’t hard filter the impressions – allow them to be 

priced (next step). 

4. Calculate a bid price that minimizes the multi-KPI error. 

5. Submit bid price to auction. 

6. Deduct the Budget if the ad wins the auction 

7. Update the KPI if an external event is detected. 

8. Calculate new KPI and Budget control targets. 

The key modification is the bid calculation algorithm. We 

describe how that works in the next section. 
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Figure 10: Proposed Multi-KPI control system. 

 

Figure 1: Probability of KPI combination being selected by 

One Video advertisers 

5 ERROR MIN 

5.1 Problem Definition 

Let us define constraint error Δ𝑖
𝑘 as a measure of the difference 

between the advertiser’s desired KPI 𝑉0
𝑘  and the current KPI 

required 𝑉𝑡
𝑘 during the current time period t. 

Δ𝑖
𝑘 = 𝑓(𝑉0

𝑘 , 𝑉𝑡
𝑘)      (12) 

The objective for the optimizer will be to set bid prices such that 

the constraint error across all KPIs is minimized.  

𝑏𝑖
∗: 𝐦𝐢𝐧 𝐸𝑟𝑟 = ∑ ∑ ∑ u𝑘 ∙ Δ𝑖

𝑘

𝐾

𝑘

𝐼𝑡

𝑖

𝑇

𝑡

      (13) 

where u𝑘 ∈ [0. .1]: ∑ u𝑘
𝑘 = 1  are user-defined weights on the 

KPI errors. The reader should assume these are u𝑘 = 1/𝐾 unless 

otherwise stated. Let us also define bid prices for Pacing 𝑏𝑖
𝑃

and 

CPA 𝑏𝑖
𝑘
 as they are defined in (8) and (9). 
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5.1 Rate KPI Bid Prices 

We now add bid prices for Rate variables – which was the traffic 

that we were previously discarding (Figure 9-3). The bid price on 

rate variables should be such that the win-rate on the low rate 

traffic is low enough that the sum of traffic matches the required 

KPI rate. We can define the formula below: 

𝑏𝑖
𝑘 = {

𝑏𝑖
𝑃 ∙ 𝑣𝑖

𝑘∗
/𝑉𝑡

𝑘 , if 𝑣𝑖
𝑘 ≥ 𝑉𝑡

𝑘    

𝑏𝑖
𝑃 ∙ s ∙ 𝑣𝑖

𝑘∗
/𝑉𝑡

𝑘 , otherwise 
    (9.1) 

This is the same formula as (9), but with a throttle added for low 

rate traffic. Appendix A shows a method of calculating a positive 

valued s, by recording the distribution of rates observed.  

5.2 Error Minimization Calculation 

We now have K bid prices 𝑏𝑖
𝑘

 that are each optimal for their 

particular KPIs. However we need to create a final bid price that 

behaves well for the multi-KPI problem; a replacement for 

equation (9.2). Let us define each KPI’s disparity 𝛿𝑖
𝑘

 as a 

function of the difference between the constraint and the ideal 

value: 

𝛿𝑖
𝑘 = (

𝑉𝑡
𝑘

𝑉0
𝑘)

𝑃

      (14) 

where 𝑉𝑡
𝑘 is the current target for the KPI at time t and 𝑉0

𝑘 the 

original target entered by the advertiser, and P=2 is a power. This 

measures error in units of percentage difference from goal with an 

exponent to accentuate high misses. We now need to convert this 

measure of disparity into error that the system will try to 

minimize. Advertisers sign special contracts called Insertion 

Orders which specify the budget and required. Because of the 

necessity of meeting the contract, advertisers tend to view meeting 

the goal as important, over-performing as desirable but not 

essential, and missing as bad. Thus error is asymmetric, with 

over-performance much less important than achieving the 

minimum desired KPI goals. In order to capture this, we modify 

the raw KPI disparities to create a KPI error measure Δ𝑖
𝑘 that has 

a step discontinuity in which it de-weights disparities that are 

above goal by a factor 𝑟 

Δ𝑖
𝑘 = {

𝛿𝑖
𝑘 , 𝑖𝑓 𝛿𝑖

𝑘 > 1 

(𝑟 ∙ 𝛿𝑖
𝑘), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

     (15) 

𝑟 =  
min (u𝑘)(

1

𝑤
−1)

∑ u𝑘
𝑘 −min (u𝑘)

 ;  𝑤 = 0.5     (16) 

Setting 𝑟 as above ensures that at least 50% of the error will be 

allocated to KPIs that are failing their goals. Thus the system 

won’t simply over-invest in one of the KPIs, at the expense of 

KPIs that are in trouble. In addition the scale-down in error upon 

reaching a target ensures that the system will continue to attempt 

to improve upon the solution, even if all KPIs are exceeding their 

targets. 

We can now perform gradient descent on the error function 

(15). The solution with the greatest error reduction will be to 

select the bid price for the KPI that is most in need 

𝑏𝑖
∗ = 𝑏𝑖

𝑘: max u𝑘 ∙ Δ𝑖
𝑘    (17) 

Successively minimizing the maximum error component is an 

example of Tchebycheff Optimization [12, 20, 26]. This form of 

optimization formally meets the criteria for weak Pareto 

optimality as it will converge to a solution that dominates other 

solutions, although as with other non-linear optimization 

strategies, the solution could become stranded at a local optimum 

[22]. We vectorize or “batch update” by taking a step in the 

direction of each sub-optimal bid price 𝑏𝑖
𝑘

, weighted by the 

magnitude of its error u𝑘 ∙ Δ𝑖
𝑘. 

𝑏𝑖
∗ =

1

∑ u𝑘 ∙ Δ𝑘
𝑘

∑ u𝑘 ∙ Δ𝑖
𝑘

∙ 𝑏𝑖
𝑘

𝐾

𝑘≠𝑃

     (18) 

We’ll refer to the above Multi-KPI bid update algorithm as “Px”. 

6 SOME THEORETICAL REASONS WHY 

ERROR MIN MAY WORK “BETTER” THAN 

A HARD CONSTRAINT APPROACH 

In order to understand why the above optimization scheme may be 

preferable in practice than a constrained alternative, we will need 

to identify the distributions that are common in online advertising. 

There are two key functions: (i) the advertising response function 

and (ii) the price-value function. 

 

Definition 1: Advertising Response. Advertising Response is 

typically defined as the advertising effect per unit of investment – 

either impressions or dollars [24]. In our problem, the advertising 

response function will be defined as the volume of KPI events 

generated for a given bid price at a given time: 

 

𝑉𝑘(𝑏𝑖
∗) = 𝑊(𝑏𝑖

∗) ∙ 𝑣𝑖
𝑘(𝑏𝑖

∗) ∙ 𝐼𝑡(𝑏𝑖
∗)    (19) 

 

Advertising Response has been studied experimentally for well 

over 50 years. Meta-studies of hundreds of experiments have 

concluded that the shape of this function is almost always convex, 

which means diminishing returns with higher advertising 

investment [18,19,20,29]. Taylor et. al. (2009) conclude that “the 

weight of empirical findings makes it possible to generalize that 

the advertising-response function is convex” [28]. In addition to 

empirical studies, advertising response can be shown to be convex 

under a simple assumption about a greedy optimization: 

 

Lemma 1: Convexity under Greedy Optimization  

A greedy advertising optimization process will buy the highest 

value per dollar inventory in order descending  
𝑉𝑘(𝑏𝑖

∗)

𝑏𝑖
∗  until it 

reaches its budget [10, 13]. Because of the sort ordering, each 

subsequent unit of inventory being purchased will be the same or 

lower value per dollar. Therefore we can postulate that the 

following will be true under greedy optimization: 

 

𝑉𝑘(𝑐∙𝑏𝑖
∗)

𝑐∙𝑏𝑖
∗ ≤

𝑉𝑘(𝑏𝑖
∗)

𝑏𝑖
∗ ; where 𝑐 ≥ 1;  

𝑉𝑘(𝑐∙𝑏𝑖
∗)

𝑐
≤ 𝑉𝑘(𝑏𝑖

∗) 

𝑉𝑘(𝑐 ∙ 𝑏𝑖
∗) ≤ 𝑐 ∙ 𝑉𝑘(𝑏𝑖

∗) where 𝑐 ≥ 1   (20) 

 

We will use (20) in Lemma 4 and later to measure the relative 

cost of different solutions. 

 

Definition 2: Price-Value Function 

Let the price value function be the expected KPI value per 

impression at a given bid price 𝑣𝑘(𝑏𝑖
∗) . This is the “current 

auction price” for different levels of KPI quality. 
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Lemma 2: Price-Value Function is Linear in GSP auction 

If the advertiser is paying 𝑏𝑖 for the traffic, then they must make at 

least 𝑏𝑖 from subsequent conversions in order to remain profitable. 

Thus the advertiser’s Nash Equilibrium must be greater than or 

equal to their cost. Moreover, the “Single Item” Generalized 

Second Price (GSP) auction has a dominant strategy of bidding 

true valuation [4]. Therefore we would expect the advertiser’s 

value to equal their bid price. Therefore we can postulate a linear 

relationship between KPI value per impression 𝑣𝑖
𝑘 and bid price 

𝑏𝑖, if indeed the KPI that the advertiser has specified, is a true unit 

of value for that advertiser.  

 

𝑣𝑖
𝑘(𝑐 ∙ 𝑏𝑖) = 𝑐 ∙ 𝑣𝑖

𝑘(𝑏𝑖)  ; 𝑣𝑖
𝑘(𝑐 + 𝑏𝑖) = 𝑣𝑖

𝑘(𝑐) + 𝑣𝑖
𝑘(𝑏𝑖)     (21) 

 

(21) will be used in Lemma 4 below to establish the relative value 

and KPI volume of different solutions. Although this only asserts 

linearity for an individual advertiser, we often observe linearity 

between bid price and KPI on real auctions (Figure 2), suggestive 

that indeed KPI is a measure of economic value. In addition, 

earlier work has suggested correlations between bid price and real 

world measures of value such as home price value [14]. We can 

now note several properties of the advertising problem: 

 

Lemma 4: Number of KPI Events (a.k.a “Volume”) declines 

as an Exponential Function of the Number of Constraints 

Consider an unconstrained solution 𝑈 with bid 𝑏𝑈  , KPI 𝑣𝑈  and 

spend 𝐵𝑈 and a constrained solution X with KPI which is a factor 

of c higher, 𝑣𝑋 = 𝑐 ∙ 𝑣𝑈 . Using (21) we note that because the KPI 

is higher, the bid price will also be higher 𝑏𝑋 = 𝑐 ∙ 𝑏𝑈 . The 

amount spent under each solution must be the same 𝐵𝑈 = 𝐵𝑋. By 

definition 𝐼𝑋 =
𝐵𝑋

𝑏𝑥
=

𝐵𝑈

𝑐∙𝑏𝑈
=

𝐼𝑈

𝑐
  (22); so with the higher bid price 

we have a reduction in inventory that can be purchased. (20) notes 

that buying higher priced inventory should result in diminishing 

returns in ability to win inventory; let us define 𝑊(𝑐 ∙ 𝑏𝑈
∗) = 𝑞 ∙

𝑐 ∙ 𝑊(𝑏𝑈
∗) where 𝑞 ∈ [0. .1] (23). The volume of KPI events at 

the unconstrained solution will be 𝑉𝑈 = 𝑊(𝑏𝑈
∗) ∙ 𝐼𝑈 ∙ 𝑣𝑈  . The 

volume of events at constrained point will be equal to 𝑉𝑋 = 𝑐 ∙

𝑣𝑘(𝑏𝑈
∗) ∙ 𝑊(𝑏𝑈

∗) ∙ 𝑞 ∙ 𝐼𝑈 𝑐⁄ = 𝑞 ∙ 𝑉𝑈  . If 𝐾  constraints are now 

added, loss grows as a function 𝑞𝐾.  

 

Lemma 5: Cost per KPI event (a.k.a “Efficiency”) worsens as 

an Exponential Function of the Number of Constraints 

Let Efficiency be defined as the Cost per KPI: 𝐶𝑃𝑉 =
𝑏𝑖

𝑊(𝑏𝑖)∙𝑣𝑖
𝑘(𝑏𝑖)

 

Growth in the denominator as a function of constraints is 𝑞𝐾 , 

which means that CPV increases exponentially with constraints. 

 

Lemma 6: Higher Volume under Non-Constraint Solution 

This is a consequence of Lemma 4 since 𝑉𝑋 = 𝑞 ∙ 𝑉𝑈; 𝑞 ∈ [0. .1] 

 

Lemma 7: Lower Total Error Inclusive of Delivery under 

Non-Constraint Solution 

Let us define error as the squared difference between KPI and 

KPI-target, and budget-spent and target-spend. Error for 

unconstrained solution  𝐸𝑟𝑟𝑈 will be 

 

𝐸𝑟𝑟𝑈 = (𝑉𝑈
𝑘 − 𝑉𝑡

𝑘)
2

+ (𝐵𝑈 − 𝐵𝑡)2 

From Lemma 4 we know that the constrained solution will have  

𝑉𝑋 = 𝑞 ∙ 𝑉𝑈  with the same budget 𝐵𝑋 = 𝐵𝑈. Therefore we know 

that the error will equal: 

 

𝐸𝑟𝑟𝑋 = 𝐸𝑟𝑟𝑈 + (1 − 𝑞)2 ∙ (𝑉𝑈
𝑘 − 𝑉𝑡

𝑘)
2
 

 

Since we know 𝑞 ∈ [0. .1] then 𝐸𝑟𝑟𝑋 ≥ 𝐸𝑟𝑟𝑈. 

7.1 Discussion 

The intuition behind these results is that because of the shape of 

advertising distributions – linearity of price-value and convexity 

on volume per dollar - forcing an algorithm to squeeze the last 

few percent of performance by buying above a constraint, is likely 

to produce lower amounts of KPI for higher expense. The money 

would be better spent buying up the K other KPIs that are lower 

on their distributions, and so less costly.  

In practice the loss of efficiency can be “eye watering”: Table 

3 shows that for identically set up ads, the last 1% of viewability, 

came at the expense of 50% of delivery. Most advertisers would 

consider that 1% of viewability a “rounding error” and would 

gladly forgo it to double their volume. 

We have also introduced the concept of “error” which 

measures distance from the advertiser’s target vector inclusive of 

volume. We suppose that advertisers have some intuitive concept 

of “distance from ideal”, and that volume is part of that concept. 

The above lemmas show that given any constrained solution that 

is meeting KPIs, but not necessarily volume per the standard 

problem definition (2), a lower or same error solution exists which 

does not have the constraint restriction. The Px algorithm is 

designed to use gradient descent to search for that lower error 

solution. 

Throughout the experiments next, we will compare the error 

and volume of each algorithm. We will show that, not only does 

this principle hold, but it results in a surprising amount of 

performance gain in real auctions. For example, as Table 3 

suggests, doubling volume may be possible with a rounding error 

change in other KPIs. This kind of performance gain is significant 

in real-world advertising. 

 

Figure 2: Viewability Rate of website versus Price paid by 

advertiser for One Video publishers on July 5, 2016. Bubble 

size represents the number of impressions from each website. 

𝒃𝒊(𝒗𝒊
𝒌) = 𝜷𝟏𝒗𝒊

𝒌 + 𝜷𝟎 ; 𝜷𝟏 = 𝟒. 𝟓𝟎 (𝒕 = 𝟏𝟎𝟔; 𝒑 < 𝟎. 𝟎𝟏); 𝜷𝟎 =

𝟓. 𝟒𝟕 (t=261; p<0.01). 
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7 AD SERVING SIMULATION 

We developed a Matlab auction simulation to illustrate the 

dynamics of each algorithm without the complexity of a real ad 

server [15]. In Section 10 we show how the simulation compares 

to actual ad-server experiments. The parameters were T=50 time 

periods, each with It = 300 impressions. The advertiser wishes to 

buy I=5000 impressions, and from these generate K=3500 KPI 

events, suggesting an initial KPI rate of 𝑉0
𝑘 = 0.70 . The 

advertiser has B=$50 dollars to spend; CPM 𝐵0=10. T=50; It = 

300; I=5000; K=3500; B=50; Z=5. 

7.1 Ad Serving Loop 

Each time period, following loop is executed: 

1. Assume there are It impressions that are available to purchase 

at each time period t. 

2. Set the predicted value of each impression 𝑣𝑖
𝑘 to a uniform 

random number between 0 and 1. 𝑣𝑖
𝑘 = U(0,1) 

3. Estimate the pacing bid price 𝑏𝑖
𝑃

 as per Equation 8. Let 𝑤 =

∑ 𝑊𝑖
∗

𝑖 ∑ 𝑏𝑖𝑖⁄ .. The pacing bid price  𝑏𝑖
𝑃

 can then be 

calculated as follows: At each time t the controller wishes to 

buy I𝑃  impressions, which equals probability of win 𝑊𝑖 

multiplied by total impressions during the cycle I𝑡. Using the 

formula for 𝑊𝑖  above we calculate 𝑏𝑖
𝑃

 as follows: I𝑃 =

𝑊𝑖 ∙ I𝑡; I𝑃 = 𝑤 ∙ 𝑏𝑖
𝑃 ∙ I𝑡 ; 𝑏𝑖

𝑃 =
I𝑃

(𝑤∙I𝑡)
 

4. The KPI bid price and final bid prices are then calculated 

using the control processes described earlier (Equation 18). 

5. For each of the It  impressions, the impression i is “won” 

𝑊𝑖=1 if the bid multiplied by a uniform random number is 

greater than a threshold Z. 𝑊𝑖
∗ = U(0,1) ∙ 𝑏𝑖

∗ > Z 

6. The actual value from the impressions is then set as 𝑣𝑖
𝑘∗

  

𝑣𝑖
𝑘∗

= 𝑣𝑖
𝑘 + ρ𝑘;  ρ𝑘 = μ𝑘 ∙ U(0,1) + σ𝑘 ∙ 𝑁(0,1) 

𝑣𝑖
𝑘∗

 represents the actual value of the traffic and is equal to 

predicted value 𝑣𝑖
𝑘 plus ρ𝑘 and capped between 0 and 1 (not 

shown above). ρ𝑘 is a term representing additive noise. 

7. The budget and KPIs are then updated, and targets for budget 

and KPI calculated using the feedback control process. 

(Equation 10). 

The simulation is initialized in a perturbed state where 𝑇𝐼𝑁𝐼𝑇   

time periods have already been completed with the system offset 

from its ideal target 𝐵0  and 𝑉0
𝑘  by a perturbation of 

𝜀𝑃𝐵0 and 𝜀𝑘𝑉0
𝑘; 𝜀𝑃 ∈ [0.5. .1.5]; 𝜀𝑘 ∈ [0.5. .1.5] . The simulation 

then continues over the remaining time steps until time 𝑇and the 

final result in terms of Pacing and KPI performance are recorded. 

7.1 Ad Server Simulation Results 

Optimizer Algorithm 1: Pacing: Figure 3 shows the behavior of a 

Pacing algorithm (pacing bid only 𝑏𝑖
∗ = 𝑏𝑖

𝑃
) (Equation 8). This 

buys all traffic until it fills its budget. The resulting algorithm 

delivers fully ( 𝐵𝑇/𝐵0  = 1) . However since it just buys 

everything, the KPI result is poor; 𝑉𝑇
𝑘/𝑉0

𝑘 = 0.750. The total 

KPI events delivered are equal to 1*0.750=0.750. 

 

Figure 3: Pacing Optimization: y-axis is delivery achieved 

divided by delivery target (1.0 means impressions delivered 

were equal to the desired amount). x-axis is KPI achieved 

divided by KPI Target (1.0 means achieving the KPI target). 

Triangle represents the ideal (1,1) solution. The vectors show 

the trajectory of the control system from perturbed starting 

point to end state (dots). Square shows the mean for trajectory 

end-points. Pacing results in achievement of delivery goal 

(trajectories end at 1.0 on the y-axis), but poor KPI results 

(end-points are spread to the left below the KPI objetive; the 

end-point varies with severity of initial perturbation). 

Optimizer Algorithm 2: Constraint: Figure 4 shows a single 

objective with constraints method (Equation 9). For each 

impression,if 𝑣𝑖
𝑘 < 𝑉𝑡

𝑘
 then 𝑏𝑖

∗ = 0 , otherwise it is bid as per 

Equation 9. The constraints force good KPI performance (𝑉𝑇
𝑘/

𝑉0
𝑘 = 1.1). However with strict filter on traffic, the system now 

experiences delivery problems 𝐵𝑇/𝐵0 = 0.750. Total KPI events 

delivered is higher at 1.10*0.750=0.825.  

 

Figure 4: Constraint Optimization: Constraints push KPI 

results to be above target (right of the 1.0 vertical line), but 

result in problems pacing (below the 1.0 pacing horizontal 

line). Square indicates the mean of trajectory end-points. A 

convex hull surrounds the end-points. 

Optimizer Algorithm 3: Px: Figure 5 shows the Error Minimizer 

algorithm (Equation 18). Px achieves very close to a perfect score 

with delivery and KPI just a fraction away from 1.0; 𝐵𝑇/𝐵0  =

0.984; 𝑉𝑇
𝑘/𝑉0

𝑘 = 0.995. Total KPI events delivered equal 0.979. 

Thus, by allowing a tiny reduction in the KPI rate (1 → 0.995), 
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delivery was able to be increased in significantly (0.825 → 0.98). 

Intuitively this solution is a rounding error away from both KPI 

and delivery goals – so meeting both goals - and produces 20% 

higher KPI delivery than either pacing or constraint approaches. 

 

Figure 5: (top) Error Minimization: Error-min enables 

dynamic trading off between pacing and KPI. The error 

(distance between end point and (1,1)) is smaller than either 

pacing or constraint strategies. The square represents the 

mean of trajectory end-points. This is slightly shifted towards 

the lower left from the (1.0,1.0) ideal (the triangle shape is at 

1,1). However for that tiny reduction in KPI and Pacing, the 

above solution produces 20% more events and much lower 

error. 

 

Figure 6: Mean final performance from multiple perturbation 

starts from different classes of algorithms from simulation 

(Table 1). Star is pacing, Circle constraint, and Triangle Px. x-

axis is KPI achieved divided by KPI Target (1.0 means 

achieving the KPI target). y-axis is Pacing achieved divided by 

Pacing Target (1.0 means impressions delivered were equal to 

the desired amount). Px is close to center (a tiny amount left 

and down), pacing achieves delivery targets but has high error 

on KPI, and constraint methods exceed their KPI goals, but 

show a large miss on delivery. 

 

 

Table 1: Simulation results 

Simulation Value1 

Metric Pac  Con  Px  

Ads 121 121 121 

ImpsTarg 5,000 5,000 5,000 

ImpsActual 5,000 3,817 4,922 

ViewsTarg 3,500 3,500 3,500 

ViewsActual 2,601 3,914 3,481 

Views/Targ 0.743  0.854 0.979  

RMSE 0.182  0.187 0.012  

Imps/Targ 1.000  0.763 0.984  

VR/Targ 0.743  1.118 0.995  

VRTarg 70.0% 70.0% 70.0% 

VRActual 52.0% 78.3% 69.7% 
1Pacing = “Pac”, Constraint = “Con”, Error Min = “Px”. *indicates 

worse than Px at p<0.05 level under t-test; + indicates better than 

Px at p<0.05 level under t-test. 

8 AD SERVER EXPERIMENTS 

We next examined the algorithms in a real ad-server. One Video 

is responsible for serving about 13.2% of all US video ads 

(Comscore, 2014). The code was implemented in ANSI C and 

included an A/B test switch to run ads on different algorithms. 

In our first experiment, 35 ads were configured with the three 

algorithms introduced earlier – Pacing, Constraint, and Px. Each 

ad was set up with the identical parameters: I=5000; B=$50; 𝑏𝑖 ≤

$12; 𝑉 ∈ [3500,4000,4500]; 𝑉0 ∈ [0.7, 0.8, 0.9]. $1,750 of real 

dollars were used to buy ads ($50 per ad), and 5,000 impressions 

were set as the delivery target for each ad. The ads ran over a 30 

day period. The KPI being targeted was Viewability Rate. 

The above parameters were nearly identical to those used in 

the simulation. The results are shown in Table 2. Px took a tiny 

reduction on KPI compared to Constraints (VR/Targ = 0.997 

versus 0.978; not significant on t-test). However delivery was 

significantly better for Px (0.70 →  0.98; p<0.05). Ignoring the 

variance, on average, for a 0.1% reduction in KPI, delivery was 

increased 1.4 times. Thus Px approximately achieved both KPI 

and delivery goals (0.997 and 0.98); but with 40% more delivery 

(Table 2, Figure 7; Figure 8). 

8.1 Comparison to Simulation 

We can compare the 35 production ads (Figure 7; Table 2) to the 

simulation results (Figure 6, Table 1) presented earlier. Lemma 7 

suggested that non-constraint methods are able to generate lower 

error than constraint methods. Both simulation and production ads 

do indeed show lower RMSE for Px than both Constraint and 

Pacing solutions. 

One difference between the simulation and production results 

is that the simulation suggested that constraint methods may over-

perform their KPI targets; i.e. the Constraint position is slightly 

towards 5 o’clock, indicating KPI/targ results above 1.0. In 

contrast, in production we did not find much over-performance – 

Constraint produced an average of 0.997 (slightly less than 1.0), 

and only a few points exceeded the KPI target. We believe this 

may be due to regression-to-the-mean effects [27]. The act of 

buying high KPI traffic can be considered a form of “biased 

sampling”. When sampling a population’s high extremes, the 

errors are not symmetrically distributed – the actual “true mean” 
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for the group will tend to lay further towards the population mean 

– i.e. lower than the predicted value. The magnitude of the 

correction towards the mean increases with (a) prediction error or 

lack of correlation of predicted values upon repeated testing and 

(b) the extremeness of the biased sampling. Therefore, we should 

expect a relatively high downward correction under real-world ad-

serving conditions. If constraints are therefore being used because 

of the desire for the ad-server to “guarantee” that it will meet the 

advertiser’s KPI, in practice actual KPI performance may very 

well still fail because of regression-to-the-mean. Advertisers 

should be aware of this when pursuing a constraint-based 

approach. 

 

Figure 7: Means for 35 Production Ads under parameters 

similar to simulation (compare to Simulation in Figure 6). 

Star symbol indicates the results from Pacing ads (5 points). 

Inverted triangle shows results from Px ads (19), and Circles 

indicate results from constraint ads. 

 

Figure 8: Subset of ads from the 35 ad experiment (Table 2) 

with x-axis KPI, y-axis Pacing, and z-axis representing total 

KPI events. Circles are constraint algorithms and Stars are 

Pacers. Px (triangles) produce far more KPI events than the 

other algorithms. 

 

Table 2: Live Results from 35 ads 

35 ads Value 

Metric1 Pac  Con  Px  Pac  Con Px  

Ads 5 11 19    

ImpsTarg 25,000 55,000 95,000    

ImpsActual 25,010 38,656 93,291    

ViewsTarg 19,500 47,000 75,500    

ViewsActual 10,313 32,838 72,091    

Views/Targ 0.522* 0.706* 0.960 0.255 0.378 0.063 

RMSE 0.338* 0.227* 0.057 0.180 0.205 0.045 

Imps/Targ 1.000 0.703* 0.982 0.000 0.309 0.043 

VR/Targ 0.522* 0.997 0.978 0.254 0.070 0.090 

VRTarg 78.00% 85.45%+ 79.47% 4.5% 5.2% 6.2% 

VRActual 41.23%* 84.96%+ 77.31% 21.0% 3.3% 4.9% 

eCPM 9.46 7.29+  9.51  0.88  2.86  3.49  

vCPM 22.94* 8.58+ 12.30 20.85  3.44  4.55  
1 Pacing = “Pac”, Constraint = “Con”, Error-Min = “Px”; * 

indicates worse than Px at p<0.05 level under t-test; + indicates 

better than Px at p<0.05 level under t-test. 

 

Table 3: Three ads with comparable goals 
 

Ad1 VR Imps 

VR/ 

targ 

Imps / 

targ eCPM vCPM 

PAC – ad TT 48.0% 166 0.5333 1.000 6.13 12.77 

CON – ad U 88.2% 94 0.980 0.566 6.06 6.87 

PX – ad S 86.0% 166 0.956 1.000 5.24 6.09 
1 Three of the 35 ads for comparison with roughly the same 

targets: Impressions = 166 per day and ViewabilityRate= 90%. Px 

gets to 86% Viewability Rate. Constraint achieves 2% higher 

Viewability Rate of 88%. However Constraint halves the number 

of impressions to get this extra 2%. Constraints tend to promote 

economically irrational behavior that makes it hard to improve 

other KPIs and delivery. 

9 RESULTS OVER 6 MONTHS 

In April 2016 the new optimization functionality was made 

available to about 1/3rd of One Video’s advertiser population. 

Between April and the end of September about 130 ads went live 

using the new optimizer, and 250 ads were initialized using a 

priority-based, constraint optimizer. Although the selection to 

each cohort was not randomized since advertisers opted in on their 

own, the results match the simulation and earlier production 

results. 

The target viewability goals specified by the two groups of 

advertisers were not statistically significantly different (63.5% vs 

61%(ns)), suggesting that both groups had similar targets. Yet 

Viewability rate delivered versus desired was significantly higher 

in the error-optimized group: 1.07 versus 0.64. There was minimal 

difference in delivery in this case (0.82 versus 0.80). Therefore 

the Px group experienced a 1.7x increase in KPI volume (53%-

>88%) (Table 4). 

 

Table 4: 400 ads over 6 months 

6 months Value 

Metric Con  Px  Con  Px  

Ads 274 126   

ImpsTarg 2,174,652,928 274,418,086   

ImpsActual 2,290,497,954 290,721,874   

ViewsTarg 1,546,292,689 152,244,234   
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ViewsActual 236,438,173 126,524,237   

Views/Targ 0.532 0.882* 0.499 0.539 

RMSE 0.448 0.364* 0.259 0.252 

Imps/Targ 0.80 0.82 0.32  0.32  

VR/Targ 0.64 1.07* 0.52  0.49  

VRTarg 61.0% 63.5% 0.13  0.15  

VRActual 38.7% 66.0%* 0.31  0.32  

eCPM 8.95 11.90* 3.24  4.18  

vCPM 23.12 18.03* 3,392 65  

Pr(Success) 29.3% 60.5%*   
* indicates significantly different from Legacy at p<0.05 under t-

test. 

10 HIGHER NUMBERS OF KPIS 

It was also possible to report on multiple KPIs as part of the 6 

month experiment. Table 5 shows all KPI tuples selected. For 

example, “Pacing+VR+Demo+CR” shows results for advertisers 

who had targets for Viewability Rate (VR) and Demographics 

(Demo) and Completion Rate (CR).  

These KPI combinations all have KPIs in different units, 

making comparions difficult. For instance, the mean Clickthrough 

rate (CTR) is around 0.10%, where-as the mean Completion Rate 

(CR) is around 60%. In order to report a single number for 

performance, we therefore report the average KPI lift over the 

mean. For example, if Viewability Rate (VR) mean was 0.33 and 

CR mean 0.60, then an advertiser targeting VR and CR who 

achieved 0.66 and 0.70 would have lift of (0.66/0.33 + 

0.70/0.60)/2 = 1.58x. 

In the treatment group, Advertisers with 2 KPIs averaged 

about 2.54x lift (1.41x legacy). 3 KPIs averaged 1.44x and 1.28x 

(1.01x and 0.96x legacy), and 4 KPIs averaged 1.09x. Px 

therefore achieved higher lift in all comparable cases. It is also 

worth observing that as more KPIs are selected, the system 

produces lower lift. This is consistent with Lemma 5. 

 

Table 5: Multi-KPI Results from 400 ads 

6 months Lift = Mean(KPI/Mean(KPI)) Ads 

Multi KPI Tuple1 Con L Px  L Con 

 L 

Px 

 L 

Con 

 

Px 

 

Pacing+VR 1.41 2.54 1.04 1.12 132 78 

Pacing+VR+CR 1.01 1.44 0.50 0.47 45 30 

Pacing+VR+Demo 0.96 1.28 0.55 0.39 81 11 

Pacing+VR+Demo+CR   1.09   0.08 0 7 

Pacing+VR+CTR 0.55  0.13  5 0 

Pacing+VR+CR+CTR 1.26  0.59  11 0 
1 Multi-KPI Results from 400 ads over 6 months on Px versus 

Legacy algorithm (“Leg”). VR=”Viewability Rate”, 

CR=”Completion Rate”, CTR=”Clickthrough Rate”, 

Demo=”Demographic In-Target Rate”. N=number of ads with this 

KPI tuple as its target. Each cell shows average lift across the KPI 

tuple. Empty cells mean there were no ads with this configuration. 

11 PREVIOUS WORK 

Most work in online advertising has focused on single objective 

problems, particularly click and conversion maximization 

[5,11,13,14] and smooth budget delivery [1,17,23,31,32]. Geyik 

et. al. tackle multiple KPIs but do so by solving sequential single 

optimum problems [6]: they propose a solution of using 

“prioritized goals”, where the advertiser specifies which key 

performance indicator they care about the most, and that is met 

first, and then if others can be met, they are met only after the first 

priority (this approach is referred to as the Lexicographic method 

in the multi-objective optimization literature [25]). By using a 

prioritized goal approach, this enables the optimization problem to 

be translated into a series of single variable - single constraint 

maximization problems that are applied in succession. 

The problem with “prioritized goal satisfaction” is if the 

system is unable to achieve the first objective, then all other KPI 

goals could be extremely poor. For example, if the budget is 

treated as a top-priority KPI, then the system risks buying “junk 

traffic” and never actually delivering any performance.  

The present paper builds upon the Cost-min algorithm which 

has been studied and implemented over a long period of time in 

computational advertising [11, 13, 14]. This is used for calculating 

a bid price that will achieve a given Cost Per Acquisition 

constraint. The algorithm also utilizes scalarization to create a 

single objective function from multiple criteria; another well-

known approach in the optimization literature [12, 20, 26]. An 

important modification to this general technique is that the 

“scalarized” objective function uses an error measure which is 

sensitive to each variable either achieving or failing its own goals. 

This gives rise to the algorithm’s behavior of focusing resources 

on KPIs that aren’t meeting their goals, and de-resourcing KPIs 

that have met their goals. Further work could be done shaping the 

penalty function to better reflect advertiser judgments of meeting 

their goals, but even with the simplistic squared-error - 

discontinuity function presented here, the results have been 

surprisingly good. 

12  ECONOMICS 

The impact of switching to error minimization at One Video has 

been very positive. As shown in Table 3 and 4, we have observed 

significant gains in KPIs and delivery for advertisers using the 

method. More qualitatively, we have also seen fewer support 

tickets. A customer survey performed just before release and then 

6 months after release, measured advertiser satisfaction across 9 

criteria. The most significant increase was for “Performance 

against KPIs”. 

The economic impact of better KPI and delivery fulfillment is 

also considerable. Whilst not reporting One Video’s revenues, we 

can note that ComScore publicly reported that One Video served 

2.5 billion video ads during the month of July 2016 [2], and 

TubeMogul reports that a 30 second video ads average a CPM of 

approximately $10 [3]. Thus a One Video sized ad-server would 

be expected to generate around $300 million in revenue per year. 

Increasing the KPIs by a factor c, means the advertiser could raise 

their budget by c and still maintain at least the same revenue 

divided cost [13]. A 1.7x gain in delivery therefore translates into 

$206 million in additional revenue. 

13 CONCLUSION 

This paper has reviewed the literature on ad servers and proposed 

an alternative framework which uses the concept of multi-

objective error minimization. Multiple experiments show that 

error minimization solutions are significantly closer to the 

advertiser’s target, and most notably, address the “lack of 

delivery” phenomena that we see under the standard, constraint-

based problem formulation. 

Since the 1990s, Ad Server design has been invariably 

formalized as a single objective maximization problem subject to 

constraints (including work by the present authors eg. [13]). 

While constraints are an important tool, and can be used in the 
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formulation described in this paper, it seems increasingly likely 

that many KPIs in high demand by advertisers today, are really 

indicators for high conversion probability. 

Multi-KPI error minimization strategies seem to offer 

significant benefits for these kinds of KPIs and problems. They 

enable potentially infeasible problems to be tackled soundly and 

enable economic trade-offs between far/near and at-target KPIs to 

be codified using continuous error functions, so that rational 

investment can take place (constraint methods effectively state 

that at no price would a KPI that is a fraction lower than the target 

ever be purchased; if value is linear with the KPI then that could 

be considered extremely irrational). KPI error minimization also 

enables the system to maintain its ability to produce volume.  

We believe that more rich and varied KPIs are likely in the 

advertising space, and as a result, these techniques will become 

more important in the future. 

APPENDIX 

Let 𝐷(𝑣)  be a distribution of KPI values observed so far and 

𝑊(𝑏) be a win rate model. Assuming accurate predictions  𝑣𝑖
𝑘∗ 

=𝑣𝑖
𝑘 (i.e. ignoring regression-to-the-mean effects), in equation 9.1 

𝑠 = 0 will buy none of the below-rate traffic. This will trivially 

ensure that ∑ ∑ 𝑊𝑖(𝑏𝑖) ∙ 𝑣𝑖
𝑘𝐼𝑡

𝑖
𝑇
𝑡 ≥ 𝑉𝑡

𝑘, however this will also result 

in a KPI result that is overly high. We can buy a non-zero amount 

of the “below-rate” traffic by calculating 𝑠 ≥ 0 as follows: 

𝑠 = (DL(𝑉𝑡
𝑘) −

𝑉𝑡
𝑘−VH(𝑉𝑡

𝑘)∙DH(𝑉𝑡
𝑘)−VL(𝑉𝑡

𝑘)∙DL(𝑉𝑡
𝑘)

VH(𝑉𝑡
𝑘)−VL(𝑉𝑡

𝑘)
) /DL(𝑉𝑡

𝑘) 

VH(𝑉) =
∑ 𝑣∙𝐼(𝑣)1

𝑣=𝑉

∑ 𝐼(𝑣)1
𝑣=𝑉

;  VL(𝑉) =
∑ 𝑣∙𝐼(𝑣)𝑉

𝑣=1

∑ 𝐼(𝑣)𝑉
𝑣=1

; DH(𝑉) =
∑ 𝐼(𝑣)1

𝑣=𝑉

∑ 𝐼(𝑣)1
𝑣=0

; 

DL(𝑉) =
∑ 𝐼(𝑣)𝑉

𝑣=0

∑ 𝐼(𝑣)1
𝑣=0

; 𝐼(𝑣) = 𝑊 (𝑏𝑖
𝑃 ∙

𝑣

𝑉𝑡
𝑘) ∙ 𝐷(𝑣);  
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