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Abstract

In this work, we propose the use of large set of unlabeled
images as a source of regularization data for learning ro-
bust visual representation. Given a visual model trained by
a labeled dataset in a supervised fashion, we augment our
training samples by incorporating large number of unlabeled
data and train a semi-supervised model. We demonstrate that
our proposed learning approach leverages an abundance
of unlabeled images and boosts the visual recognition per-
formance which alleviates the need to rely on large labeled
datasets for learning robust representation. To increment
the number of image instances needed to learn robust visual
models in our approach, each labeled image propagates
its label to its nearest unlabeled image instances. These
retrieved unlabeled images serve as local perturbations of
each labeled image to perform Visual Self-Regularization
(VISER). To retrieve such visual self regularizers, we com-
pute the cosine similarity in a semantic space defined by the
penultimate layer in a fully convolutional neural network.
We use the publicly available Yahoo Flickr Creative Com-
mons 100M dataset as the source of our unlabeled image
set and propose a distributed approximate nearest neighbor
algorithm to make retrieval practical at that scale. Using
the labeled instances and their regularizer samples we show
that we significantly improve object categorization and local-
ization performance on the MS COCO and Visual Genome
datasets where objects appear in context.

1. Introduction
Image recognition has rapidly progressed in the last five

years. It was shown in the ground-breaking work of [22] that
deep convolutional neural networks (CNNs) are extremely
effective at recognizing objects and images. The develop-
ment of deeper neural networks with over a hundred layers
has kept improving performance on the ImageNet dataset [7],
and we have arguably achieved human performance on this
task [35]. These developments have become mainstream and
may lead to the perception of image recognition as a solved

∗Work was done while the author was an intern at Flickr, Yahoo Re-
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problem. However, image recognition remains an area of
active research. ImageNet is indeed biased towards single
objects appearing in the middle of the image, which is in
contrast with the photos we take with our mobile phones that
typically contain a range of objects that appear in context.
Also, the list of object categories in ImageNet is a subset of
the lexical database WordNet [29]. This makes ImageNet
biased towards certain categories such as breeds of dogs, and
does not match the scope of more general image recognition
tasks such as object detection and localization in context.

Datasets such as MS COCO [25] or Visual Genome [21]
have been constructed such that photos are typically com-
posed of multiple objects appearing at a variety of positions
and scales. They provide a more realistic benchmark for
image recognition systems that are intended for consumer
photography products such as Flickr or Google Photos. MS
COCO currently contains 300K images and 80 object cate-
gories, whereas Visual Genome contains 100K images and
thousands of object categories. CNNs are also showing the
best performance on these datasets [34, 21]. As training
deep neural networks requires a large amount of data and
the size of MS COCO and Visual Genome is an order of
magnitude smaller than ImageNet, the CNN weights are
initialized using the weights of a model that was originally
trained on ImageNet. In this paper we focus on improving
image recognition performance on MS COCO and Visual
Genome.

The labels in MS COCO and Visual Genome are obtained
via crowdsourcing platforms such as Amazon Mechanical
Turk. Hence it is time-consuming and expensive to obtain
additional labels. However, we have access to huge quanti-
ties of unlabeled or weakly labeled images. For example, the
Yahoo Flickr Creative Commons 100M dataset (YFCC) [40]
is comprised of a hundred million Flickr photos with user-
provided annotations such as photo tags, titles, or descrip-
tions.

In this paper, we present a simple yet effective semi-
supervised learning algorithm that is able to leverage labeled
and unlabeled data to improve classification accuracy on
the MS COCO and Visual Genome datasets. We first train
a fully convolutional network using the multi-labeled data
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Figure 1. The t-SNE [27] map of the whole set of images (including MS COCO and YFCC images) labeled as ‘Bus’ category after applying
our proposed VISER approach. Can you guess whether green or blue background correspond to the human annotated images of MS COCO
dataset? Answerkey:blue:MSCOCO,green:YFCC

(e.g. MS COCO or Visual Genome). Then, we retrieve for
each training sample the nearest samples in YFCC using
the cosine similarity in a semantic space of the penultimate
layer in the trained fully convolutional network. We call
these Regularizer samples which can be considered as real
perturbed samples compared to the Gaussian noise perturba-
tion considered in virtual adversarial training [31]. Having
access to a large set of unlabeled data is critical for finding
representative regularizer samples for each training instance.
For making this approach practical at scale, we propose an
approximate distributed algorithm to find the images with
semantically similar attention activation. We then fine-tune
the network using the labeled instances and Regularizer sam-
ples. Our experimental results show that we significantly
improve performance over previous methods where models
are trained using only the labeled data. We also demonstrate
how our approach is applicable to object-in-context retrieval.

2. Related work
The recognition and detection of objects that appear “in

context” is an active area of research. The most common
benchmarks for this task are the PASCAL VOC [10] and MS
COCO datasets. Deep convolutional neural networks have
been shown to provide optimal performance in this setting
with state-of-the-art performance results for object detection
in [34]. It has recently been shown in [33, 38, 9, 3, 42]
that it is possible to accurately classify and localize objects
using training data that does not contain any object bounding
box information. We refer to this training data that does
not contain the location information of the object as weakly-
supervised.

The size of labeled "objects in context" datasets is typi-
cally small. For example, MS COCO has around 300,000
images and Visual Genome has over 100,000 images. How-
ever, we have access to large amounts of unlabeled web
images. The Yahoo Flickr Creative Commons 100M dataset
has one hundred million images that have user annotations
such as tags, titles, and description. There has been some
recent efforts to leverage this user annotation to build ob-
ject classifiers. For instance, [18] proposes a noise model
that is able to better capture the uncertainty in the user an-
notations and improve the classification performance. It is
shown in [19] that it is possible to learn state-of-the-art im-
age features when training a convolutional neural network
from a random initialization using user annotations as target
labels. In [12], the authors also train deep neural networks
from scratch and use the output layers as classifiers directly.
However, classifier performance is lower when training on
noisy data. Contrary to these approaches, we propose a form
of curriculum learning [4] where we first train a model on a
small set of clean data, and then augment the training set by
mining instances from a large set of unlabeled images.

While it is shown that by making small perturbations to
the input it is possible to make adversarial examples which
can fool machine learning models [39, 23, 24], adversar-
ial examples can be used as a means for data augmenta-
tion to improve the regularization capability of the deep
models. Our method is related to adversarial training tech-
niques [13, 31, 30] in the sense that additional training in-
stances with small perturbations are created and added to
the training data. However, in contrast to those methods,
we retrieve real adversarial examples from a large set of
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Figure 2. We use a Fully Convolutional Network to simultaneously categorize images and localize the objects of interest in a single forward
pass. The last layer of the network produces an tensor of N heatmaps for localizing objects where each corresponds to one of the Nth object.
The green areas correspond to regions with high probability for the object produced by our network.

unlabeled images. Our examples are thus real image in-
stances which possess high correlation to the labeled data
in the semantic space determined by the penultimate layer
of the neural network after the first phase of training. Such
instances usually correspond to large perturbations in the
input space but follow the natural distribution of the data
which is analogous to the adversarial perturbations. We call
our retrieved image instances as Regularizer and show that
the Regularizer instances can be used to re-train the model
and further improve performance.

Semi-supervised learning is the class of algorithms where
classifiers are trained using labeled and unlabeled data. A
number of approaches have been proposed in this setting
such as Naive Bayes and EM algorithm [32], ensemble meth-
ods [5] and propagating labels based on similarity as in [43].
In our case the size of the unlabeled set is three orders of
magnitude larger than the size of the labeled set. Existing
methods are therefore impractical, and we propose a simple
method to propagate labels using a nearest neighbor search.
The metric is the cosine distance in the space defined by the
penultimate layer of the fully convolutional neural network
after it has been trained on the clean dataset. We argue that
the size of our unlabeled set is critical in order for the label
propagation to work effectively, and we propose approxima-
tions using MapReduce to make the search practical [6].

Large-scale nearest neighbor search is commonly used
in the computer vision community for a variety of tasks
such as scene completion [16], image editing with the Patch-
Match algorithm [2], or image annotation with the TagProp
algorithm [15]. Techniques such as TagProp [15] have been
proposed to transfer tags from labeled to unlabeled images.
In this work we take advantage of the powerful image rep-
resentation from a deep neural network to transfer labels
as well as regularize training. Similarly labels can be prop-
agated using semantic segmentation [14]. This method is
applied on ImageNet which has a bias towards a single ob-
ject appearing in the center of the image. We focus here on
images where objects appear in context.

Nearest neighbor search has also been shown to be suc-
cessful in other computer vision applications which involve

other modalities. For example, in [8] the performance of
several nearest neighbor methods is examined on the image
captioning task. By conducting extensive experiments, the
results of [8] have shown that nearest neighbor approaches
can perform as good as state-of-the-art methods for image
captioning.

3. Proposed Method

3.1. Fully Convolutional Network Architecture

Most recent developments in image recognition have been
driven by optimizing performance on the ImageNet dataset.
However, images in this dataset have a bias for single objects
appearing in the center of the image. In order to increase
performance on photos where multiple objects may appear at
different scales and position, we adopt a fully convolutional
neural network architecture inspired by [26]. Each fully con-
nected layer is replaced with a convolutional layer. Hence,
the output of the network is a H ×W ×N tensor where the
width and height depend on the input image size and N is
the number of object classes. For each object class the corre-
sponding heatmap provides information about the object’s
location as illustrated in Figure 2. In our experiments we use
the base architecture of VGG16 [36] shown in Figure 2.

3.2. Multiple instance learning for multilabel clas-
sification

We are given a set of annotated images A =
{(xi, yi)}i=1...n, where xi is an image and yi =
(y1i , . . . , y

N
i ) ∈ {0, 1}N is a binary vector determining

which object category labels are present in xi. Let f l be
the object heatmap for the lth label in the final layer of the
network. The probability at location j is given by applying a
sigmoid unit to the logits f l, e.g. plj = σ(f lj).

We do not have access to the location information of the
objects since we are in a weakly labeled setting. Therefore,
to compute the probability score for the lth object category to
appear at the jth location, we incorporate a multiple instance
learning approach with Noisy-OR operation [28, 41, 11].
The probability for label l is given by Equation 1. Also, for



learning the parameters of the FCN, we use stochastic gradi-
ent descent to minimize the cross-entropy loss L formalized
in Equation 2.

pl = 1−
∏
j

(1− plj). (1)

L =

N∑
l=1

−yl log pl − (1− yl) log (1− pl) (2)

3.3. Visual Self-Regularization

It has been observed that deep neural networks are vul-
nerable to adversarial examples [39]. Let x be an image
and η a small perturbation such that ‖η‖∞ ≤ ε. If the
perturbation is aligned with the gradient of the loss func-
tion η = εsign(∇xL) which is the most discriminative
direction in the image space, then the output of the network
may change dramatically, even though the perturbed image
x̃ = x + η is virtually indistinguishable from the original.
Goodfellow et al. suggest that this is due to the linear nature
of deep neural networks. They also show that augmenting
the training set with adversarial examples results in regular-
ization similar to dropout[13].

In Virtual Adversarial Training [31] the perturbation is
produced by maximizing the smoothness of the local model
distribution around each data point. This method does not
require the labels for data perturbations and can also be used
in semi-supervised learning. The virtual adversarial example
is the point in an ε ball around the datapoint that maximally
perturbs the label distribution around that point as measured
by the Kullback-Leibler divergence

η = argmin
r:‖r‖2≤ε

KL[p(y|x, θ) || p(y|x+ r, θ)]. (3)

We propose to draw perturbations from a large dataset
of unlabeled images U whose cardinality is much higher
than A. For each example x, we use the example x̃ that
is nearby in the space defined by the penultimate layer in
our fully convolutional network. This layer contains spatial
and semantic information about the objects present in the
image, and therefore x and x̃ have similar semantics and
composition while they may be far away in pixel space. We
consider the cosine similarity metric to find samples which
are close to each other in the feature space and for efficiency
we compute the dot product of the L2 normalized feature
vectors. Let θ denote the optimal parameters found after
minimizing the cross-entropy loss using the training data in
A, and fθ(x) be the L2 normalized feature vector obtained
from the penultimate layer of our network(Conv(1,1,2048)).
The similarity between two images x and x′ is then computed
by their dot product S(x, x′) = fθ(x)

T fθ(x
′). For each

training sample (xi, yi) in A, we find the most similar item
in U

x̃i = argmax
x∈U

S(xi, x), (4)

Algorithm 1 Distributed Regularizer Sample Search
function MAP(k, x) . k: sample index in U , x: image
data

Compute network output layer fθ(x)
Compute similarities with samples in A: si =

fθ(x)
T fθ(xi),∀i = 1 . . . n

Sort s by descending similarity values si1 ≥ si2 . . . ≥
sin

for l = 1 to km do
EMIT il, (k, sil)

end for
end function
function REDUCE(k, v) . k: sample index in A, v:
Iterator over (sample index in U , similarity score) tuples

Let v = ((i1, c1), (i2, c2) . . .
Sort v by descending similarity values cj1 ≥ cj2 . . . ...
for l = 1 to kr do

EMIT k, ijl , cjl
end for

end function

and transfer the labels from xi, to generate a new, Real Ad-
versarial (Regularizer), training sample (x̃i, yi). Similar
to adversarial and virtual adversarial training, our method
improves the classification performance. We interpret our
sample perturbation as a form of adversarial training where
additional examples are sampled from a similar semantic
distribution as opposed to noise. We also used the ε perturba-
tion of each labeled sample in the gradient direction (similar
to adversarial training) to find the nearest neighbor in un-
labeled set and observed similar performance. Therefore,
in this paper our focus is on using the labeled samples for
finding Regularizer instances to improve performance.

3.4. Large scale approximate regularizer sample
search

In our experiments we use the YFCC dataset as our set
of unlabeled images. Since it contains 100 million images,
an exhaustive nearest neighbor search is impractical. Hence
we use the MapReduce framework [6] to find approximate
nearest neighbors in a distributed fashion. Our approach is
outlined in Algorithm 1. We first pre-compute the feature
representations fθ(xi) for xi ∈ A. The size ofA for datasets
such as MS COCO or Visual Genome is small enough that
it is possible for each mapper to load a copy into memory.
A mapper then iterates over samples x in U , computes the
feature representation fθ(x) and its inner product with the
pre-computed features in A. It emits tuples for the top km
matches that are keyed by the index in A, and also contain
the index in U and similarity score. After the shuffling phase,
the reducers can select for each sample in A the kr closest
samples in U . We use km = 1000 and kr = 10. We are
able to run the search in a few hours, with the majority of



Figure 3. Top regularizer examples from unlabeled YFCC dataset (row 2-6) that are retrieved for multi-label image queries in several of the
MS COCO categories (first row).

the time being in the mapper phase where we compute the
image feature representation. Note that our method does
not guarantee that we can retrieve the nearest neighbor for
each sample in A. Indeed, if for a sample xi there exists
km samples xj such that fθ(xj)T fθ(x̃i) ≥ fθ(xi)

T fθ(x̃i),
then the algorithm will output either no nearest neighbor or
another sample in U . However we found our approximate
method to work well in practice.

4. Experiments
4.1. Semi-Supervised Multilabel Object Catego-

rization and Localization

We use the MS COCO [25] and Visual Genome [21]
datasets as our source of clean training data as well as for
evaluating our algorithms. MS COCO has 80 object cate-
gories and is a common benchmark for evaluating object
detectors and classifiers in images where objects appear in
context. The more recent Visual Genome dataset has annota-
tions for a larger number of categories than MS COCO. Ap-
plying our proposed method on the Visual Genome dataset

is important to understand whether the algorithm scales to
a larger number of categories, as it is ultimately important
to recognize thousands of object classes in real world appli-
cations. All images for both datasets come from Flickr. In
all experiments we only use the image labels for training
our models and discard image captions and bounding box
annotations.

For the MS COCO dataset we use the standard split used
in [25] for training and evaluating the models. The training
set contains 82,081 images and validation set has 40,504
images. For the Visual Genome dataset we only use object
category annotations for images. The images are labeled as a
positive instance for each object if the area ratio of the bound-
ing box with regards to the image area is more than 0.025.
We only consider the 1,432 object categories for which there
are at least 80 image instances in the training set. The Visual
Genome test set is the intersection of Visual Genome with
the MS COCO validation set which is comprised of 17,471
images. We use the remaining 90,606 images for training our
models. As for the source of unlabeled images, we use the
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Figure 4. Object localization comparison between “FCN,N-OR”(mid row) and “FCN,N-OR,VISER”(last row).

YFCC dataset [40] and discard the images that are present
in Visual Genome or MS COCO. The data is 14TB and is
stored in the Hadoop Distributed File System.

We use the TensorFlow software library [1] to implement
our neural networks and conduct our experiments. To con-
duct the distributed nearest-neighbor search, we use a CPU
cluster. We use VGG16 architecture pre-trained for the Im-
ageNet classification task as our base network. We resize
images to 500×500. Our initial learning rate is 0.01 and we
apply the 0.1 decay factor for adapting the learning rate two
times during the training after 20K and 40K mini-batches.
We run stochastic gradient descent for 60K iterations with
mini-batches of size 15 which corresponds to 11 epochs.

We conduct our experiments on the object classification
and point-based object localization tasks. As for the object
evaluation metric, we use the mean Average Precision (AP)
metric where we first compute the precision for each class
and then take the average over classes. For evaluating our
object localization, we use the point localization metric intro-
duced in [33], where the location for a given class is given
by the location with maximum response in the corresponding
object heatmap. The location is considered correct if it is
located inside the bounding box associated with that class.
Similar to [33] we use a tolerance of 18 pixels.

Tables 1 and 2 summarize our results with the mean AP
for the classification and localization tasks on the MS COCO
and Visual Genome datasets. We compare our performance
with three state-of-the-art methods for object localization and
classification [33, 38, 3]. In [33], to handle the uncertainty
in object localization, the last fully connected layers of the
network are considered as convolution layers and a max-
pooling layer is used to hypothesize the possible location of
the object in the images. In contrast, we use Noisy-OR as
our pooling layer. In [38], a multi-scale fully convolutional
neural network called ProNet is proposed that aims to zoom

into promising object-specific boxes for localization and
classification. We compare against the different variants
of ProNet with chain and tree cascades. Our method uses
a single fully convolutional network, is simpler and has a
lighter architecture as compared to ProNet. In all tables
‘FullyConn’ refers to the standard VGG16 architecture while
’FullyConv’ refers to the fully convolutional version of our
network (see Figure 2). The Noisy-OR loss is abbreviated
as ’N-OR’, and we denote our algorithm with VISER.

We can see in Table 1 that our proposed algorithm reaches
50.64% accuracy in the object localization task on the MS
COCO dataset which is more than a 4% boost over [38] and
a 9.5% boost over [33]. Also, without doing any regular-
ization and by only using Noisy OR (N-OR) paired with a
fully convolutional network, we obtain higher localization
accuracy than Oquab et al. [33] and different variants of
ProNet [38].

In the object classification task, our proposed VISER
approach outperforms other state-of-the-art baselines of [38,
33] by a margin of more than 4.5% and gains an accuracy
of 75.48% for the MS COCO dataset. In addition, other
variants of [38] are less accurate than our fully convolutional
network architecture with Noisy-OR pooling (‘FullyConv, N-
OR’). This result is consistent with the results we obtained in
the object localization task. While the method of [3] obtains
competitive performance on the MS COCO localization task,
our method outperforms it in the classification task by a large
margin of 21.4%. A recent method [9] obtains classification
and localization accuracy of 80.7% and 53.4% respectively
using the deeper ResNet [17] architecture. Hence it is not
directly comparable with ProNet [38], [3] and our method
which use the VGG [36] as base network architecture. In
addition our proposed method has a label propagation step
which produces a large set of labeled images with object level
localization in “object in context” scenes and can be used in



Table 1. Mean AP for classification and localization tasks on the
MS COCO dataset (higher is better).

Method Classification Localization

Oquab et al. [33] 62.8 41.2
ProNet (proposal) [38] 67.8 43.5
ProNet (chain cascade) [38] 69.2 45.4
ProNet (tree cascade) [38] 70.9 46.4
Bency et al. [3] 54.1 49.2

FullyConn 66.68 –
FullyConv,N-OR 72.52 47.47
FullyConv,N-OR,AT [13] 74.38 49.75
FullyConv,N-OR,VAT [31] 74.30 49.42
FullyConv,N-OR,VISER 75.48 50.64

other learning methods. Also, the method of [9] is based on a
new pooling mechanism while our method proposes a better
regularization for training ConvNets using a large scale set of
unlabeled images in a semi-supervised setting and therefore
is orthogonal to [9]. We also perform an ablation study and
compare against other forms of regularization using our fully
convolutional network architecture with Noisy-OR pooling
(‘FullyConv, N-OR’). In Table 1 and 2, we compare three
forms of regularization: adversarial training (‘AT’) [13],
virtual adversarial training (‘VAT’) [31], and our proposed
Visual Self-Regularization (VISER) using the YFCC dataset
as source of unlabeled images.

To conclude, our proposed approach outperforms state-of-
the-art methods as well as several baselines by a substantial
margin in object classification and localization tasks accord-
ing to the results shown in Table 1 and Table 2. Hence, the
regularization mechanism of our proposed method results
in a performance boost compared to the other forms of ad-
versarial example data augmentation. We show that visual
self-regularizers (VISER) make our learning robust to noise
and provides better generalization capabilities.

4.2. Object-in-Context Retrieval

To qualitatively evaluate VISER, we show several ex-
amples of the Regularizer instances retrieved using our ap-
proach in Figure 3. For each of the labeled images shown in
the first row of Figure 3, we show the top 5 retrieved images.
As we can see, the unlabeled images retrieved by our ap-
proach have high similarity with the queried labeled image.
Furthermore, most of the objects in the labeled images also
appear in the retrieved images. This observation qualitatively
demonstrates the effectiveness of our label propagation ap-
proach. It is worth mentioning that Figure 3 shows that the
relative location of the objects in the retrieved images is
fairly consistent with that of the query images. This sug-
gests that our simultaneous categorization and localization
approach can also be used for propagating bounding box
annotations.

Table 2. Mean AP for classification and localization tasks on the
Visual Genome dataset (higher is better).

Method Classification Localization

FullyConn 9.94 –
FullyConv,N-OR 12.35 7.55
FullyConv,N-OR,AT [13] 13.96 9.05
FullyConv,N-OR,VAT [31] 13.95 9.06
FullyConv,N-OR,VISER 14.82 9.74

Figure 1 shows the results of our VISER approach on
the ‘Bus’ category. We visualize the t-SNE [27] map of
the whole set of images labeled as ‘Bus’ which includes
instances from both the labeled images in the MS COCO
and unlabeled instances from the YFCC dataset. To produce
the t-SNE visualization we take the output of the penultimate
layer of our network as explained in Section 3. We L2
normalize the feature vectors to compute the pairwise cosine
similarity between images using a dot product. We visualize
the t-SNE map using a grid [20]. A different background
color (blue vs. green) is assigned to images depending on
whether they are from the labeled or unlabeled set. Notice
that it is challenging to determine the color corresponding
to each dataset as photos are from a similar domain. The
images with a blue background belong to the MS COCO
dataset and the images with a green background belong to
the YFCC dataset. This visualization reveals that there are
many images in the large unlabeled web resources that can
potentially be used to populate the fully annotated dataset
with more examples. This is a step forward for improving
object categorization as well as decreasing human effort for
supervision.

Figure 6 demonstrates the qualitative performance of
“FCN,N-OR,VISER” for multi-label localization. We visual-
ize the object localization score maps where the localization
regions with high probability are shown in green. We also
display the localized objects using red dots. The score maps
show that our approach can accurately localize small and
big objects even in extreme cases where a big portion of the
object is occluded. In the first row of Figure 6 ‘dog’ and
‘laptop’ are localized quite accurately while they are largely
occluded and truncated. Similarly, the third row shows the
accurate localization of a ‘chair’ although it appears in a
small region of the image and is largely occluded. When
there are multiple instances of an object category, such as
‘person’ in the second row, ‘potted plant’ in the third row,
and ‘car’ in the sixth row, all regions corresponding to these
instances get a high score.

The failure cases of our approach are distinguished via
red boxes in Figure 6. For instance, the ‘skateboard’ in row
6 is localized around the region close to the person’s leg. In
row 8, although the ‘backpack’ region gets a high score map,
it fails to contain the highest peak and thus the localization
metric considers it as a mistake.
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Figure 5. Generalization comparison on a synthetic dataset between proposed VISER , dropout, adversarial training, and virtual adversarial
training (VAT). Training samples are shown with black borders and rest of instances are test set. Each plot demonstrates the contour of the
p(y = 1|x, θ), from p = 0 (blue) to p = 1 (red).

Table 3. Classification error on test synthetic dataset (lower is better).

cross entropy dropout [37] AT [13] VAT [31] VISER

Error(%) 9.244±0.651 9.262±0.706 8.960±0.849 8.940±0.393 8.508±0.493

We show several examples of the localization score maps
produced by “FCN,N-OR” and “FCN,N-OR,VISER” in Fig-
ure 4. By comparing the localized regions in green, we
see that “FCN,N-OR,VISER” can locate both small and
big objects more accurately. For example, in localizing
small objects such as ‘tie’, ‘bottle’ and ‘remote’, the peak
of the localization region produced by “FCN,N-OR” has a
large distance with the correct location of the object while
“FCN,N-OR,VISER” localizes these objects precisely. Also,
“FCN,N-OR” fails to be as accurate as “FCN,N-OR,VISER”
in localizing big objects such as ‘umbrella’ and ‘refrigera-
tor’.
4.3. Classification on Synthetic Data

In order to evaluate the ability of our algorithm to leverage
unlabeled data to regularize learning, we generate a synthetic
two-class dataset with a multimodal distribution. The dataset
contains 16 training instances (each class has 8 modes with
random mean and covariance for each mode and 1 random
sample per mode is selected), 1000 unlabeled and 1000 test
samples. We linearly embed the data in 100 dimensions.
Since the data has different modes, we can mimic the object
categorization task where each object category appears in a
variety of shapes and poses, each of which can be considered
as a mode in the distribution.

We use a multi layer neural network with two fully con-
nected layers of size 100, each followed by a ReLU activa-
tion and optimized via the cross-entropy loss. We compare
the generalization behavior of VISER with the following reg-
ularization methods: dropout [37], adversarial training [13],
and virtual adversarial training (VAT) [31]. The contour
visualization of the estimated model distribution is shown
in Figure 5. We can see that both adversarial training and
virtual adversarial training are vulnerable to the location
of the training sample of each mode. These regularization
techniques can learn a good boundary of the class when
the training instance is at the center of the mode, but they

over-smooth the boundary whenever the training instance is
off-center. However, our proposed VISER sampling from
unlabeled data learns a better local class distribution as adver-
sarial samples follow the true distribution of the data and are
less biased to the training instances. The dropout technique
is also learning a good regularization, but it is less smooth at
the boundaries of the local modes. Table 3 summarizes the
misclassification error on test data over 50 independent runs
on the synthetic dataset.

5. Conclusion and Future Work
In this paper we have presented a simple yet effective

method to leverage a large unlabeled dataset in addition to
a small labeled dataset to train more accurate image classi-
fiers. Our semi-supervised learning approach is able to find
Regularizer examples from a large unlabeled dataset. We
have achieved significant improvements on the MS COCO
and Visual Genome datasets for both the classification and
localization tasks. The performance of our approach could
be further improved in future work by incorporating user
provided data such as ‘tags’. Also, having access to a large
set of unlabeled data is fairly common in other domains and
hence we believe our approach could be applicable beyond
visual recognition.
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