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Abstract—Over the past decade, emoji have emerged as a new
and widespread form of digital communication, spanning diverse
social networks and spoken languages. We propose to treat these
ideograms as a new modality in their own right, distinct in their
semantic structure from both the text in which they are often
embedded as well as the images which they resemble. As a new
modality, emoji present rich novel possibilities for representation
and interaction. In this paper, we explore the challenges that arise
naturally from considering the emoji modality through the lens
of multimedia research. Specifically, the ways in which emoji can
be related to other common modalities such as text and images.
To do so, we first present a large scale dataset of real-world emoji
usage collected from Twitter. This dataset contains examples
of both text-emoji and image-emoji relationships. We present
baseline results on the challenge of predicting emoji from both
text and images, using state-of-the-art neural networks. Further,
we offer a first consideration into the problem of how to account
for new, unseen emoji — a relevant issue as the emoji vocabulary
continues to expand on a yearly basis. Finally, we present results
for multimedia retrieval using emoji as queries.

I. INTRODUCTION

MOIJI, small ideograms depicting objects, people, and

scenes, have exploded in popularity. They are now avail-
able on all major mobile phone platforms and social media
websites, as well as many other places. According to the
Oxford English Dictionary, the term emoji is a Japanese
coinage meaning ‘pictogram’, created by combining e (picture)
with moji (letter or character). Emoji as we know them were
first introduced as a set of 176 pictogram available to users to
Japanese mobile phones. The available range of ideograms has
expanded greatly over the previous years, with 1,144 single
emoji characters defined in Unicode 10.0 and many more
defined through combinations of two or more emoji characters.
In this paper, we approach emoji as a modality related to,
but not contained within, text and images. We investigate the
properties and challenges of relating these modalities to emoji,
as well as the multimedia retrieval opportunities that emoji
present.

The identification and benchmarking of novel modalities
has a rich history in the multimedia community. When new
modalities are identified, it is important to make first attempts
to understand their relationship with already established infor-
mation channels. One way in which to do this is to explore
the cross-modal relationships between the modality and other
modalities. When Lee ef al. [19] identified nonverbal head
nods as an information-rich and overlooked modality, they
sought to provide understanding through prediction of them

based on semantic understanding of the accompanying con-
versation transcript. Like emoji, new modalities are sometimes
the result of a newly developed technology, as with 3D mod-
els [15] or the growth of microblogging [2]. Though ideograms
are ancient, emoji is a modern technological evolution of that
ancient idea. The march of technology sometimes facilitates
new looks at old problems, such as the use of infrared imagery
for facial recognition instead of natural images [43]. Often, the
presentation of new tasks as research challenges can accelerate
research progress, as it did with acoustic scenes [39] and video
concepts [38]. We look to this history of multimedia challenge
problems and identify emoji as an emerging modality worthy
of a similar treatment. To facilitate further research on emoji,
we propose three emoji challenge problems and present state-
of-the-art neural network baselines for them, as well as a
dataset for evaluation.

Despite their prevalence, research into emoji remains lim-
ited. The majority of prior research concerning emoji has fo-
cused on descriptive analysis, such as identifying how patterns
of emoji usage shift among different demographics [5], [11],
or have used them as a signal to indicate the emotional affect
of accompanying media [16], [34]. The focus on sentiment
is likely a result of there being a number of “face emoji”
(e.g. &) which are designed to exhibit a particular emotion or
reaction. These face emoji are by far the most visible emoji
and among the most widely used [33], but the focus on them
ignores the hundreds of other emoji which are worthy of study
in their own right. Beyond these face emoji, the full set of
emoji also contains a wide range of other objects, such as
foods (=), signs (), and scenes (E) which may lack a
strong sentimental signal [32]. Focusing solely on the emotion-
laden subset of emoji ignores the information conveyed and
possibilities presented by the many other ideograms available.

In this work, we approach emoji as an information-rich
modality in their own right. Though emoji are commonly
embedded in text, we view them as distinct from text. Their
visual nature allows for emoji to add richness of meaning
and variety of semantics that is unavailable in pure text.
When embedded in text, emoji sometimes simply replace a
word, but more often they provide new information which
was not contained in the text alone [1], [29]. Emoji can
be used as a supplemental modality to clarify the intended
sense of an ambiguous message [35], attach sentiment to a
message [37], or subvert the original meaning of the text
entirely in ways a word could not [12], [30]. Emoji carry
meaning on their own, and possess compositionality allowing



(00:08.33)

(00:16.67)

(00:25.00)

s

a-F ¥°1 4

~

P 2

(00:33.33) (00:41.67) Entire Video
a ’-5;";
- ‘ | _—
sl ad EFeoAd EF=wX

Fig. 1. Emoji prediction used for video summarization and query-by-emoji, adapted from our previous work [8]. A. The emoji summarization of the entire
video presents a more complete representation of the video’s contents than a single screenshot might. B. Emoji can be used as a language-agnostic query
language for media retrieval tasks. Here, emoji are used to retrieve photos from the MSCOCO dataset. Despite their limited vocabularity, emoji can be
combined to compose more nuanced queries, such as shoe+-cat. This results in a surprisingly flexible modality for both content description and retrieval.

for more nuanced semantics through multi-emoji phrases [22].
Many emoji are used in cases where the particular symbol
resembles something else entirely, acting as a kind of visual
pun. These qualities, along with a cross-language similarity
of semantics [5], suggest that emoji, despite being unicode
characters, are distinct from their frequent textual bedfellows.

Though emoji are represented by small pictures, they are
distinct from standard images. As a form of symbology, the
specifics of the individual representation is often incidental
to the underlying meaning of the ideogram — this is unlike
images where the particulars of a given image are often more
crucial than what it is representing generally (i.e., it is a
photo of your dog, not just a photo representing the semantic
notion of ‘dog’). This difference is further substantiated by the
fact that emoji exist as nothing more than unicode characters.
As characters, the details of their illustrations are left up to
the platform supporting them, and significant variation for
a single emoji can exist between platforms [27], [42]. For
these reasons, their behaviour and meaning is substantially
different from that of images. Figure 1 gives examples of
video summary using emoji and query-by-emoji, which nicely
demonstrate the way in which emoji as ideograms are related
to but different from natural imagery.

Having established the view that emoji constitute a distinct
modality from text or images, this paper seeks to explore the
ramifications of this viewpoint through the lens of multimedia
retrieval challenges. As a modality, we focus on the relation-
ship between emoji and two other modalities, namely text and
images. This work makes the following contributions.

e We propose and support the treatment of emoji as a
modality distinct from either text or images.

« We present a large scale dataset composed of real-world
emoji usage, containing both textual and text+image
examples. We consider a wide range of over 1000 emoji,

including the often overlooked long tail of emoji. This
data set as well as the training splits will be available for
future researchers.

« We propose three challenge tasks for relating emoji to text
and images, and present state-of-the-art baseline results
on these. Namely, the tasks are emoji prediction from text
and/or images, prediction of unanticipated emoji using
their unicode description, and lastly multimedia retrieval
using emoji as queries.

In the following section we give an overview of previous
work on emoji. In Section III we present our dataset, and
propose three challenge tasks presented by the emoji modality.
In Sections IV, V, and VI we present baseline results for each
of these challenge tasks using state-of-the-art deep learning
approaches. In Section VII, we conclude.

II. RELATED WORK
A. Emoji

Previous work on emoji in the scientific community has
focused on using them as a source of sentiment annotation, or
on descriptive analysis of emoji usage.

1) Emoji for Sentiment: Much of prior work has viewed
emoji primarily as an indicator of sentiment. This is done
either explicitly, through the direct consideration of sentiment,
or implicitly, through the consideration of only popular emoji.
The most popular emoji are disproportionately composed of
sentiment-laden emoji. Face emojis, thumbs-up, and hearts
have high incidence, while less emotional emoji such as
symbols, objects, and flags, have much lower incidence. The
result is that any work which considers only the most popular
emoji may have an inherent bias toward heavy sentiment
emoji.

Several works look at the effect that including emoji can
have on the perception of accompanying text. Some find



that the inclusion of emoji increases the perceived level of
sentiment attached to a message [29], [32], [37]. Similarly, the
work from [36] finds that emoji correlate to a more positive
perception for messages in a dating app than messages that
don’t contain emoji. These works demonstrate that emoji can
be a useful supplementary signal for sentiment within text
messages, but these works focus primarily on face emoji
designed specifically for the communication of emotion. In
contrast, [35] investigates the affect of non-face emoji. They
found that even non-face emoji can increase perceived emo-
tion, and also can improve clarity of text that is otherwise
ambiguous. Some text phrases are ambiguous when considered
alone, but the inclusion of another modality (emoji) can help
readers to pin-point the intended sense (e.g. “I took the shot”
vs “I took the shot H‘-L”).

A notable work of sentiment analysis of emoji is [32],
which annotated a collection of tweets with sentiment and
presented sentiment rankings for 751 emoji (the most frequent
in their data). Their work demonstrated that while some
emoji have very strong positive sentiment scores, others were
very neutral, being rarely associated with strong positive or
negative sentiment. Similarly, they observed that some emoji
are used frequently to denote both strong positive and negative
sentiment. These observations suggest that treating emoji as
merely a straightforward signal of sentiment is misguided,
and that there’s a more nuanced richness and variety to emoji
meaning.

Lastly, some works consider emoji, particularly face emoji,
as a pure sentiment signal. The approach by [34] incorporates
emoji as an input source for evaluating the sentiment of social
media messages mentioning particular brands. Going a step
further, [16] assumes emoji to be a reliable ground truth for
sentiment. They construct a dataset for sentiment prediction
and use a set of emoji to automatically annotate the dataset.
Given the broad ambiguity of usage and the sentiment gap
between emoji and text explored in other works, such an
approach may yield noisy annotation.

2) Analysis of Emoji Usage: Numerous works have helped
to glean insight into the properties and trends of real-world
emoji usage. Several have looked at the manner in which
emoji usage varies between different countries and cultures [5],
[21], [23]. Meanwhile [11] analyzes differences in emoji usage
patterns between genders. While there are differences between
how specific communities may use emoji, the data makes clear
that emoji usage is on the rise globally [21], [46]. This further
supports our viewpoint that emoji are their own modality, as
they are not tied to any one particular culture or language
and share semantic commonalities which are orthogonal to
the community that uses them.

Several works look at the problem of ambiguity in the
perceived meaning of emoji [27], [28], [42]. In general, they
find a degree of ambiguity with emoji, and that the choice
of illustration used by a particular platform (e.g. iOS or
Android) can increase this confusion. Notably, [28] observes
that the inclusion of an additional input modality (in the form
of textual context) improves the distinctiveness of meaning
substantially. This observation is well in line with what has
been known in the multimedia community for years: that

a multi-modal approach can improve prediction. Ambiguity
between the message intent from the author of an emoji-
containing message and its interpretation by readers has also
been investigated [7]. The ambiguity and breadth of possible
meaning for a given emoji helps to make emoji a challenging
modality for algorithmic understanding, worthy of pursuing
and with a high ceiling for perfection.

The relationship among emoji themselves has been studied
in [6], [33], [45]. The work of [33] gives a thorough analysis
of emoji usage, and proposes a model for analyzing the
relatedness of pairs of emoji. Similarly, [6] looks at the
problem of trying to identify text tokens which are most
closely related to a given emoji. The authors do this by
learning a shared embedding space using a skip-gram model
[25], and identifying those text tokens closest to the emoji
within this mutual semantic space. While both [33] and [6]
learn models that could be applied to emoji prediction, they
both focus instead on descriptive analysis of emoji usage.

Along similar lines, there has been some recent work on
identifying the different ways in which emoji can be used in
combination with text. [1], [12], [29] use emoji either as a
straightforward replacement for text, or as a supplementary
contribution which alters or enhances the meaning of the text.
The work of [12] constructs a dataset of 4100 tweets that
have been annotated to indicate whether the emoji contain
redundant information (already contained in the text) or not.
Among their collection of annotated tweets, they found that
the non-redundant class was the largest class of emoji. This
result supports our proposition that emoji are distinct from,
though entwined with, any text that accompanies them.

While works such as [1], [6], [33] tackle the problem of
understanding emoji usage through building models on top of
real world usage data, there has also been work on trying to
build an emoji understanding in a more hand-crafted fashion.
For example, [44] acquires a structured understanding of emoji
usage through combining several user-defined databases of
emoji meaning. Their later work then uses this data to learn
a model for sentiment analysis which performs comparably
to models trained directly on real world usage data [45]. This
kind of structured, pre-defined understanding of emoji is simi-
lar to the no-example approach explored in our previous work
[8] and further explored in this work. This work, however,
targets emoji as a rich, informative modality rather than only
a means to perform sentiment analysis.

[22] is an early investigation into the compositionality
of emoji. They find that emoji can be combined to create
new composed meanings, a finding which lends support to
the notion of composing queries from multiple emojis that is
discussed in this work.

Much of the analysis of these works support our philosophy
of treating emoji as a modality in their own right. In contrast
to these works and to complement them, rather than trying to
provide descriptive analysis of emoji usage, we focus on how
the emoji can be used with and related to other modalities.

3) Cross-modal Emoji Prediction: A few recent works have
investigated the problem of emoji prediction, which is closer
to our position of emoji-as-modality.
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Fig. 2. Overview of our three proposed tasks. Emoji Prediction and Unanticipated Emoji both seek to score emoji based on other input modalities. Their
difference is that Emoji Prediction has the benefit of emoji-annotated training examples to learn from, while Unanticipated Emoji simulates the setting of
newly released emoji where there is no training data available. Query-by-Emoji seeks to retrieve relevant multi-modal documents using queries composed

with emoji.

Our previous work was the first to look at the problem
of emoji prediction [8], and approached from a zero-shot
perspective due to a lack of established dataset. Following on
from the work, a query-by-emoji video search engine was also
proposed [9]. These works reported quantitative results only on
related tasks in other modalities, and presented only qualitative
results for the emoji modality. We instead present results on a
large scale, real-world emoji dataset, with proposed tasks and
state-of-the-art supervised baselines.

Felbo et al. [14] learn a model to predict emoji based on
input text. Rather than using the model directly for the task of
emoji prediction, they use this model as a form of pre-training
for learning a sentiment prediction network. Additionally, their
emoji model is intentionally limited to 64 emoji chosen for
having a high degree of sentiment. Our aim is to treat emoji
as an end goal rather than an intermediary, and to consider the
full breadth of emoji available including rare emoji or emoji
with little or no sentiment attached to them.

Barbieri et al. [4] looked at the problem of emoji prediction
based on an input text. Their setting is most similar to the
one considered in this paper. However, they focus strictly
on text, while we consider also images. Further, Barbieri
et al. restrict their labels to only the top 20 most frequent
emoji within their dataset. Along similar lines, [20] uses a
convolutional network to predict 100 common emoji based
on a corresponding text from weibo or another social media
network. Both of these papers consider only the most common
emoji. There are thousands of emoji, and the longtail of the
available emoji are a valuable and difficult prediction task. We
consider the full range of emoji present in our dataset, and
look at the problems involved with tackling this longtail. We
further distinguish our work by also considering the problem
of newly introduced emoji, which is important as the set of

available ideograms is growing every year.

El et al. [13] is, to the best of our knowledge, the only
previous work that considers supervised prediction of emoji
from images. Their work looks at the problem of translating
images of faces into corresponding face emojis. We take a
broader approach both on the image and annotation sides,
seeking to instead predict any sort of relevant emoji based
on a wide variety of images.

III. NEW MODALITY

There is no guarantee that a simple explanation of what an
emoji depicts will encompass its full semantic burden. Emoji
are inherently representational, so by definition some overlap
in semantics is expected, but that overlap may be incomplete
in terms of real-world usage. For example, the emoji for cactus
¢ is not used only to represent a cactus, but is also widely
used to signify a negative sentiment due to its resemblance to
a certain hand gesture. This discrepancy between the intended
semantics and the actual semantics leads us to propose learning
the semantics directly from real-world usage in a large dataset
collected from Twitter.

Motivated by our view that emoji constitute a separate
modality, in this section we outline our methodological ap-
proach to establishing baseline analysis and results for the
emoji modality. We begin by establishing three emoji chal-
lenge tasks, and subsequently propose a large dataset of real-
world emoji usage as a testbed for exploring these challenges.
We further propose evaluation criteria to quantify and compare
performance on these challenges and dataset. An overview
of how these three tasks differ in their objectives and the
information available to them is provided in Figure 2.



A. Emoji Challenges

1) Emoji Prediction - How to predict emoji?: There are
thousands of emoji, and new ones are added every year. As
they develop into an ever richer information signal, it is useful
to understand how emoji are related to other modalities. The
most straightforward way to go about this is to look at how
well we can predict emoji given another, related input. Since
emoji can be flexible in their usage, the question becomes:
Given some input text and/or image, can we predict the
relevant emoji that would accompany that input? This work
seeks to present strong first baselines for the problem.

We propose an Emoji Prediction challenge where the ob-
jective is to predict relevant emoji from alternative input
modalities. Using real-world training examples correlating text
and images to emoji annotations, models much seek to predict
relevant emoji when presented with test examples.

2) Emoji Anticipation - What to do about new emoji?: A
large real-world dataset provides the opportunity for learning
how to use emoji in a natural way that reflects their true
semantics. However, new emoji are added to the unicode
specification every year, and will be deployed to users before
their real world usage can be known. Any system that seeks
to understand or suggest emoji to users should be prepared to
deal with the challenge of new, previously unseen emoji.

In the Emoji Anticipation challenge, real world training
data of emoji usage is no longer available. This simulates the
situation when a new crop of emoji have been announced, but
have not yet been deployed onto common platforms. Systems
seeking to understand and predict these emoji must therefore
exploit alternative knowledge sources. We present the problem
as a zero-shot cross-modal problem, where we have only
textual metadata regarding the emoji and must then try to
determine its relevancy to images or text. This task shares
some resemblance to that of zero-shot image classification [3],
[31] or zero example video retrieval [10], [18]. Generally, in
zero-shot classification the model has a disjoint set of seen
and unseen classes, and attempts to leverage the knowledge
of seen classes as well as external information to classify the
unseen classes. Our setting differs from this, as we test our
model in a setting where it has seen no direct examples of the
target modality whatsoever.

3) Query-by-Emoji - Can we query with emoji?: Just as
relevant emoji can be suggested for given input modality,
they can instead be used as the query modality. Emoji have
some unique advantages for retrieval tasks. The limited nature
of emoji (1000+ ideograms as opposed to 100,000+ words)
allows for a greater level of certainty regarding the possible
query space. Furthermore, emoji are not tied to any particular
natural language, and most emoji are pan-cultural. This means
that emoji can be deployed as a query language in situations
where a spoken language might fail. For example, with chil-
dren who haven’t yet learned to read, or perhaps even high
intelligence animals such as apes. Further, the square form
factor of emoji works naturally with touch screen interfaces.
Many of these advantages are shared by any ideogram scheme,
but emoji have the additional benefit of exceptional cultural
penetration. Because emoji are already adopted and used daily

TABLE I
TWEMOJI DATASET AND SUBSET STATISTICS. FULL IS THE ENTIRE
COLLECTION, BALANCED HAS A CLASS-BALANCED TEST SET BUT USES
THE SAME TRAINING AND VALIDATION SETS, AND IMAGES IS COMPOSED
FROM THOSE TWEETS WITH ATTACHED IMAGES.

Full Balanced Images
# Train Samples 13M - 917K
# Validation Samples M - 80K
# Test Samples IM 10K 80K
# Emoji Present 1242 1242 1082

by millions, the cognitive burden to learn what emoji are
available to use as queries is significantly decreased.

In the Query-by-Emoji challenge, we aim to quantify per-
formance on the task of multimedia retrieval given an emoji
query. Samples in the test set should be ranked by the model
for a given emoji query, and performance will be evaluated
based on whether those documents are considered relevant to
that emoji or not.

B. Dataset

To facilitate research on these challenges, it is necessary
to use a dataset with sufficient examples of the relationship
between emoji and other modalities. Existing works on emoji
have either forgone the use of an annotated emoji dataset
or have used datasets comprised of only a small subset
of available emoji. Both of these settings are artificial and
fail to adequately represent the challenge and promise of
emoji. Instead, we target the full range of potential emoji,
including their very long tail, and seek to learn their real-
world usage rather than place any prior assumptions on them.
We construct our dataset, which we call Twemoji, from the
popular microblogging platform Twitter, and also identify two
valuable subsets of the dataset. The dataset and details of the
splits discussed below are publicly available.'

To generate a representative emoji dataset, we collected
25M tweets via the Twitter streaming API during the summer
of 2016, filtering these to 15M unique English language
tweets that contain at least one emoji. Figure 3 gives some
examples of tweets in our dataset. Emoji are common on
Twitter, appearing in roughly 1% of the tweets posted during
our collection period. However, the usage frequency is heavily
skewed (see Figure 4). & is the most commonly used emoji,
and it appears in 1.57M tweets. The top emoji (appearing in
100K+ tweets) are mostly facial expressions, hearts, and a few
hand gestures (=,:5,9). Most emoji in the dataset have only
hundreds (' ) and thousands (™, %) of examples. Flags
and symbols compose the bulk of the rarer emoji.

A fraction of the tweets also contain images, which allow
us to present results for the relationship between not only text
and emoji but also images and emoji. We therefore present
three selections of this dataset: Full, comprised of all tweets
in the collection; Balanced, which has a test set constructed
with a flattened distribution across emoji; and, Images, which
is comprised of those tweets in the collection containing both

1 Twemoji Dataset, DOI: 10.21942/uva.5822100
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Fig. 3. Example tweets from the proposed Twemoji dataset. Emoji are removed and used as ground truth annotation. The top row gives examples of text-only
tweets, while the bottom rows contain both the text and image modalities. We see the interactions between the three modalities (text, images, and emoji) can
vary. For example, F has a strong alignment between all three, while the correlation between the emoji and the tweet is more obvious in the image than the
text. Sometimes emoji re-confirm content, as in E, and sometimes they express a sentiment as in D. G gives an example where the emoji modify the content
semantics — the airplane emoji adds a suggestion of travel that is not strictly present in either the text or image modalities. Emoji are intertwined with their

related modalities, but are definitely not subsumed by them.

emoji and images. We present statistics for the three subsets
in Table I, and describe their composition below.

1) Twemoji (Full): The Twitter data set is split randomly
into training, validation, and test sets containing 13M, 1M,
and 1M tweets, respectively. Input and annotation pairs are
created by removing the emoji from the tweets’ text to use
as annotation. This approach means that the data set is multi-
label, though the predominance of tweets have only one correct
annotation. Figure 5 shows the number of tweets with a given
emoji annotation count. Noting that the y-axis is plotted on a
log scale, we see that there are almost an order of magnitude
more tweets with one emoji than with two emoji, and the
numbers continue to drop. A few tweets contain very many

emoji. These are perhaps tweets where emoji are being used
as a visual language.

The use of emoji as annotation assumes that the majority
of emoji provide only supplementary information, and are not
operating merely as one-to-one replacements for text tokens
(e.g. , “in & going to & to meet new ©” is no longer
parseable text without the emoji, while for “awesome day =
the message remains complete without the emoji).

2) Twemoji Balanced: We assume that current emoji inter-
faces may be a contributing factor to the distribution skew of
emoji usage. The difficulty in navigating to a desired emoji,
compounded with users being unfamiliar with rarer emoji,
means that the heavy skew of the distribution could be a self-
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fulfilling prophecy and an undesired one. Further, it is not clear
that the skew of commonly used emoji says anything about
their relevance for new tasks like summarization using emoji.
We therefore target the case when all emoji are used equally
often. Targeting an equal balance ensures that commonly over-
looked emoji will still be suggested, and can help eliminate
undesired dataset biases. To evaluate this, we test on a more
balanced, randomly selected subset of the test set in addition
to the full, unbalanced test set.

The balanced subset is selected such that no single emoji
annotation applies to more than 10 examples. To train toward
this objective while still leveraging the breadth of the available
data, we construct our mini batches so that each emoji has
an equal chance of being selected. Namely, the likelihood of
selecting a particular sample z; is

p(zi) = L (0
2. Cly)!
where C(y;) returns the total count of samples with the same
emoji annotation y;. While over time this assures that every
emoji equally contributes to the model updates, the model will
still gain a more nuanced understanding of the more common
emoji due to the diversity of their training samples.

3) Twemoji Images: Not all of the images contained in the
tweets were still available on the internet, but those that were
were downloaded. From these, we constructed a subset of the
dataset for which both image and text inputs were available.
Due to the prevalence of image-sharing on Twitter and the
internet as a whole, a large number of tweets contain the exact
same image as other tweets. We use the image-bearing tweets
in the full Twemoji test set as our test set. We allow duplicate
images between the train and test sets, but only when the emoji
annotation of the test set differs from that in the training set.
This results in a training set of 900k images, and validation
and test sets of 80k images.

C. Evaluation Protocols

1) Emoji Prediction: Performance in the Emoji Prediction
challenge is reported in both Top-£ accuracy and mean sample-
wise Average Precision (msAP). Top-k accuracy corresponds
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Fig. 5. Frequency of tweets containing multiple, distinct emoji in the

Twemoji-Full training set, plotted on a log scale. We see that a few tweets
contain many emoji, but the majority of tweets contain only one or two
different emoji.

directly to the scenario in which a system is suggesting some
k emoji that the user may wish to include during message
composition, and the system should try to ensure that at least
some of these emoji are relevant. As our dataset is multi-
label, we calculate Top-k accuracy by considering a prediction
as correct if any predicted class in the top k is annotated
as relevant, and a prediction as false if there are none. This
means that an emoji ranking for a given input may score a
relevant emoji as very unlikely, but still be marked as correct
if a different, relevant emoji is correctly predicted in the top
k. For N samples, where each input z; has a corresponding
binary vector y; indicating emoji relevancy, the top-k accuracy
is calculated with

J
1 Zjep(yilzi)k y; >0
0 otherwise

indy(z;,y;) = 2

S o indg (1, i) 3)
N

where p(y;|x;)r yields the indices of the A highest scoring

class predictions, and y] corresponds to the value of the jth

element of y;.

To offer a more complete picture, we also report the mean
samplewise Average Precision. This measures the performance
of the algorithm across the entire ranking of emoji for a given
input. It evaluates how accurately ranked the emoji are for a
given image and/or text input.

N c . j
1 ~ Prec(j) x y;
msap = L g~ Z5 Precti) s

where Prec(j) gives the precision of the prediction at rank j,
and y] gives the value of y; at the index j.

2) Emoji Anticipation: Emoji Anticipation differs from
Emoji Prediction in its absence of training data, but the test set
and goal of the challenge is shared with Emoji Prediction. For
this reason, results are again reported in both Top-k accuracy
and msAP.

Top-k =

4)



3) Query-by-Emoji: Query-by-Emoji turns the problem on
its head: given a query emoji, the goal is retrieve a ranked
list of documents considered relevant due to their text or
image content. As this corresponds to a more classical retrieval
problem, we report results in mean Average Precision (mAP)
across all single emoji queries

c N . i

1 S Prec(j) x y*

map— 13" 2 (Ji) Y
¢4 259

where C' is the number of single emoji queries, N is the
number of samples, and y; corresponds to the relevancy of
query ¢ to the jth ranked sample.

®)

IV. EMOJI PREDICTION

A. Baselines

1) Text-to-Emoji: Our baseline text model consists of a bi-
directional LSTM, which processes the text both in standard
order and reverse order, on top of a word embedding layer
[25]. LSTMs use their memory to help emphasize relevant
information [17], but there is still a degradation of information
propagation. The bi-directional nature of the LSTM helps
to combat this effect and ensure that information from the
beginning of the sentence isn’t lost in the representation.

Words are placed in a vector embedding space, passed
through our bi-directional LSTM layers, and the resultant
representations are combined and fed to a softmax layer that
attempts to predict relevant emoji. Text from the Twemoji
dataset is tokenized and used to train the model. The validation
set is used to determine after how many epochs to stop training
(to avoid overfitting).

2) Image-to-Emoji: Similar to the approach for text-based
prediction, we can also train a model for image-to-emoji
prediction using our data. We use a CNN to represent images
accompanying tweets. It is a GooglLeNet architecture trained
to predict 13k ImageNet classes [24], [40]. We use the repre-
sentation yielded at the penultimate layer for our image input.
We train a single soft-max layer on top of this representation
with emoji prediction as the objective, with the weights prior to
this softmax frozen. An end-to-end convolutional model could
also be trained with sufficient training data, but it would be
difficult to amass the requisite number of training samples,
particularly for the longtail of the emoji usage distribution.

3) Fusion: For the combination of both text and image
modalities, a late fusion approach is used. As both the
text-based neural network and the image-based convolutional
network output emoji confidence scores in a softmax layer,
their format is directly comparable. Given confidence scores
Dixt (Y| Tert) predicting the likelihood of a given emoji y for
some text z,; and the corresponding scores pimg (y|Timg) for
some image T;jy,g, We give a combined prediction:

PY|Ttwts Tois) = ODtat (Y] 2tat) + (1 — a)Pimg(mximg) (6)

where o is a modality weighting parameter in the range
[0, 1] which is determined through validation.

TABLE I
RESULTS FOR TEXT-BASED EMOJI PREDICTION. THOUGH NOT DIRECTLY
COMPARABLE, WE OBSERVE STRONGER PERFORMANCE ON THE
BALANCED TEST SET. THIS IS EXPECTED BEHAVIOUR AS WE TARGETED
THE BALANCED LIKELIHOOD DURING TRAINING.

Dataset Top-1 Top-5 Top-10 Top-100 msAP

Twemoji (Full) 13.0 30.0 41.0 84.0 19.4

Twemoji-Balanced 35.1 48.3 54.7 87.7 35.1
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Fig. 6. Examples of the hardest emoji to predict (red), the easiest (green),
and those in between. Ambiguous faces are difficult to predict, while emoji
tied concretely to an event, object, or place tend to be the easiest.

B. Results

1) Text-to-Emoji: The results for prediction on the Twemoji
test sets are shown in Table II. Figure 6 gives examples
of those emoji the baseline models find difficult or easy to
predict. We see that some of the most difficult emoji to
predict include ambiguous face emoji where no clear emotion
is displayed. Among the easiest emoji to predict are flag emoji
and emoji tied closely to particular events, such as Christmas
or birthdays. We also see less obvious emoji such as e
included. This is likely due to the resemblance of ©®wa
recording symbol on a video camera, as it is often used in
conjuction with tweets containing links to video. It is likely
this co-occurrence that makes it a particularly easy emoji to
predict. Such usage underscores the necessity of using real
world emoji usage where possible, as the unicode name for
O is merely ‘Large Red Circle’ which gives little to relate it
to video.

It is worth noting that the numbers here reflect accuracy on
predicting the emoji that were used, which are not necessarily
all the emoji which could have been used. It is likely that some
emoji were predicted which could be argued as relevant but
which happened to not be the particular emoji the Twitter user
selected. While the results should be considered indicative,
the annotations used cannot be considered absolute due to the
subjectivity of emoji.

We note that the model performs much stronger on the
balanced dataset. This is expected, as we targeted a balanced
distribution during training, due to the assumption that some
amount of the data bias was due to intrinsic bias in input
interfaces. While we target a balanced distribution, the model
can also be trained without balanced sampling to learn the
skewed distribution. The model, when trained without bal-



TABLE III
RESULTS OF THE CNN-BASED IMAGE-INPUT MODEL AND THE BI-DIRECTIONAL LSTM TEXT-INPUT MODEL ON TWEMOIJI-IMAGES, AS WELL AS THE
FUSION OF THE TWO.

Model Top-1 Top-5 Top-10 Top-100 msAP

. . Image only 14.7 33.0 44.0 86.4 17.0

Single Modality 1 g\t (Text Input) 177 335 434 813 223

Fusion Image + LSTM (o = 0.6) 20.6 40.3 51.5 89.3 27.0
TABLE IV

EXAMPLES OF TEXT-TO-EMOJI AND IMAGE-TO-EMOJI PREDICTION RESULTS ON THE TWEMOIJI-IMAGES TEST SET. WE OBSERVE THAT SOMETIMES
IMAGES OR TEXT CAPTURE IMPORTANT PREDICTIVE CONTENT THAT ISN’T PRESENT IN THE OTHER MODALITY, AND SOMETIMES BOTH MODALITIES
FAIL TO YIELD THE EXPECTED EMOIJI. IN GENERAL, FEW OF THE SUGGESTED EMOJI SEEM UNREASONABLE FROM A SUBJECTIVE STANDPOINT, WHICH
SUGGESTS THAT PERFECTION ON THE EVALUATION METRICS IS NOT NECESSARY FOR THE MODELS TO BE USABLE.

Image Text Image-only Text-only True Emoji
e .
A h\ rt U : nah this neymar x jordan collab is pure . Rl % Q@
y - heat
«
B rt U : one of the short poetry i have done , SER E = a3 A% . * ﬁ
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anced sampling achieves top-1 accuracy of 21.4% and 19.9%
on the raw and balanced test sets, respectively. From a practical
standpoint, this is a far less interesting result due to the heavy
skew in data. While this greatly improves the performance
on the raw test set, the performance on the balanced subset
diminishes significantly. We restrict all further discussion to
only models that have been trained with a balanced sampling
regime.

2) Image-to-Emoji: As described previously, we train a
model to predict emoji based on CNN representations of
images. In the top section of Table III, we present the results
of the image-trained model on the available image-bearing test
set. We also present results for testing the text-trained model
on this subset. We see that the image modality is competitive

to the text modality for the prediction of emoji. This suggests
that the emoji may often be as related to the images as they
are to the text content. Overall, the performance of the models
are broadly similar to those on the full Twemoji dataset, which
is encouraging. It suggests that the relationship between the
input data and the annotation is not too dissimilar to the whole
set in this subset.

Table IV gives some qualitative examples of results for
emoji prediction on image and text inputs, along with the
ground truth emoji annotation. Example C captures the food
aspect of the image which is missed in the text modality, but
neither are able to predict the true emoji. This is an example
where the information contained in the emoji modality is
mostly orthogonal to that in the text or image. We see in
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Fig. 7. Effect of modality-weighting parameter « on the prediction of

Twemoji-Images, measured in mean samplewise Average Precision. o« = 1.0
corresponds to using only the text predictions, while a value of 0.0 cor-
responds to using only image predictions. Peak performance occurs near
a = 0.6. The overall improvement through combining both modalities tells us
that the modality streams have complementary information for the prediction
of emoji.

example F that the text-based prediction is led astray by the
mention of food while the image-based method focuses on
the emotional reaction expected from cuddling animals. The
correct emoji, g appears in the top 100 results for the image-
based baseline, while it is in the 400s for the text modality.
Some examples are easily handled by both the text and image
modalities, such as A — this may be due to a strong association
between the ¥ emoji and sneaker enthusiasts. Example B is an
interesting one, because both the image and the text contained
the context of artwork, but the image was able to retrieve the
artwork’s content and associate it with the correct emoji =
while that content was not available in the text.

3) Fusion: In the bottom of Table III, we provide scores
for a fusion of both the image and text modalities. We
see a significant improvement across most metrics through
the fusion of both modalities, which tells us that they have
complementary information. Though this could be an artifact
of the representations used in either modality, it is reasonable
to assume that the semantics of the emoji are not strictly
tied to either modality, which is evidence that emoji should
be considered as a modality in their own right. In Figure
7, we show the per-sample mAP (ranking emoji given an
image+text input) performance as a function of the fusion
weighting parameter . We see that the curve hits its peak near
the center, with a skew toward the text input. This suggests a
slightly stronger correlation between the emoji modality and
text than between emoji and images.

In Figure 8, we report the per-class difference in the msAP
metric. This difference is calculated by subtracting the image-
based performance from the text-based performance. A value
of 0.0 would therefore mean that both methods performed
identically well (or poorly), a positive value indicates that the
text-based model performed better, and a negative indicates
that the image-based model performed better. A strong bias
toward the text-based approach is observed across almost all
emoji. It is impossible to say whether this reflects the strength
of cross-modal affinities, but it does tell us that the model we
use for relating text to emoji is stronger than that for images.
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Fig. 8. Per-class performance difference between text and image modalities.
This graph shows the difference in Top-5 accuracy between using solely the
text input modality to predict emoji and using solely the image input modality.
For roughly 80% of the emoji, text outperforms images for our dataset and
baselines.

V. EMOIJI ANTICIPATION

A. Baselines

1) Text- and/or Image-to-Emoji: Word embeddings have
been used for the task of zero-shot image classification as
a means to transfer knowledge from one class to another [31].
To place an emoji within this embedding space without the
need for training examples, a short textual description of the
emoji can be used as its representation.

We utilize a word2vec representation [26] that is pre-trained
on a corpus of millions of lines of text accompanying Flickr
photos [41]. Input modalities are then embedded in this shared
space, where relationships between items are evaluated by
their similarity in the space. Text terms are placed directly
in the space through vocabulary look-up, as the embedding is
originally trained on text. In the case of images, the names
of the highest scoring visual concepts are used, weighted by
their confidence scores. We use 13k visual concept scores that
come from the same GooglLeNet-style CNN used to extract
high level features in the supervised setting.

To place the emoji modality within this mutual vector space,
we use text terms extracted from the unicode-specified emoji
title and descriptions. Emoji are unicode characters, and the
details of their illustration are left to the implementation of the
platform which incorporates them. However, when new emoji
are accepted into the unicode specification, they are presented
with a title and description. We take the averaged word2vec
vector representation of the words in this specification as a
vector representative of that emoji within our space.

For emoji prediction using a fusion of text and image inputs,
we use a simple weighted late fusion approach in the manner
described in the previous section. Because we don’t have any
validation (or training) data in the unfamiliar emoji setting, the
weighting parameter o cannot be experimentally determined.
Instead, we assign o = 0.5, giving both text and visual
modalities equal priority in our model.



TABLE V
EMOIT ANTICIPATION RESULTS, REPORTED ON TWEMOJI-IMAGES. EMOJI
ARE PREDICTED WITHOUT ANY DIRECT SUPERVISION DATA, ANALOGOUS
TO WHAT MUST BE DONE WHEN NEW EMOJI ARE RELEASED. WE SEE
IMPROVEMENT ACROSS ALL METRICS WHEN A FUSION OF THE INPUT
MODALITIES IS USED.

Model Top-1 Top-5 Top-10 Top-100 msAP

Random 0.0 0.4 0.9 8.1 0.5

Zero-shot Text 1.1 2.5 39 20.9 1.9

Zero-shot Images 1.3 3.0 43 21.4 2.1

Fusion (o = 0.5) 1.5 3.8 5.7 23.8 2.5
B. Results

In Table V we give results for emoji prediction on the
Twemoji-Images dataset using only the text modality, only the
image modality, and the fusion of the two (using a = 0.5).
We observe that, as would be expected, the overall scores are
much lower than the supervised approaches in the previous
section. Though the results are small, they are significantly
above random. The top-1 accuracy of random guesses on the
Twemoji-Images test set is on the order of 0.08% compared
with 1.5% for the fusion of the zero-shot results.

A surprising result is that the Image modality actually
outperforms the text modality in most of the metrics. Because
the semantic space is learned on textual data, one might expect
the text modality to be the most reliably embedded modality
within the shared space, but that does not seem to be the
case. Perhaps this is a result of many distracting terms in the
textual data, which supervised approaches learn to filter out.
Meanwhile, the limited vocabulary of the CNN concepts are
likely to be a strong signal. Nonetheless, the fusion of the two
modalities improves performance across all metrics.

The names of emoji may be reasonable, but might not
capture unexpected uses. For example, fireworks ES could be
used for ‘north star’ or ‘sun’ based solely on its particular
illustration here — usages that would be unlikely to captured
based on the title alone. Similarly, ghost  has an especially
friendly illustration, with the spectre appearing to wave hello.
Such usage based on the visual appearance can easily diverge
relative to the drier, more descriptive title.

The performance of this baseline approach can likely be
improved by focusing on improving the quality of the mapping
of the three modalities to the mutual space. The embedding
of emoji, for example, could likely be improved by manually
specifying additional relevant text terms. The terms contained
in the unicode specification focus on being descriptive about
the emoji, focusing on what it is, rather than how it might
be used. Though difficult to experimentally evaluate in an
objective manner, adding some extra terms based on postulated
usage to the emoji representation could be one way to boost

erformance without significant extra effort. For example,
has the title “black right-pointing triangle”, which is a
description of what the emoji is but says little about how it
might be used. Adding potentially related terms such as next
or play or therefore might capture probable usage semantics
that are absent in a pure description of the emoji itself. Indeed,
due to the particular illustration of this emoji, the term black

TABLE VI
QUERY-BY-EMOJI RESULTS FOR BOTH SUPERVISED AND ZERO-SHOT
BASELINES. RESULTS ARE REPORTED IN PERCENTAGE MAP. IN THE
SUPERVISED SETTING, WE FIND THE IMAGES TO SLIGHTLY OUTPERFORM
THE TEXT, BUT IN THE ZERO-SHOT SETTING THE PERFORMANCE IS

REVERSED.

Method Twemoji Twemoji  Twemoji

(Full) (Balanced) (Images)
Random 0.1 0.3 0.2
LSTM (Text) 19.3 35.5 20.2
CNN (Image) - - 22.0
Fusion - - 21.2
Zero-shot Text 0.5 2.0 1.5
Zero-shot Images - - 0.8
Zero-shot Fusion - - 1.3

in the description is actually misleading as there is nothing
black about the right-pointing triangle in this rendering.

VI. QUERY-BY-EMOII
A. Baselines

The baselines in previous sections give normalized scores
across possible emoji given the input modalities. By calculat-
ing these normalized scores for all documents, we are able to
rank the documents in order of predicted relevancy to a given
emoji query. In this way, we can then perform retrieval per-
emoji across these documents. All results in this section are
therefore produced by applying the baseline models described
in the previous sections to all documents within the test
database, and performing retrieval based on per-emoji class
scores.

B. Results

Table VI gives results for the Query-by-Emoji task. Surpris-
ingly, we see that retrieving tweets using only the supervised
image understanding slightly outperforms both text-only and
the fusion of the two. This result is markedly different from the
emoji prediction task where text outperformed images. This
could possibly be the result of a very strong correlation within
high probability image-emoji pairs.

In Table VII, some qualitative query-by-emoji results are
shown. We observe strong signals for correlations with current
events that occurred during the data collection period of the
dataset. Tragic events occurred during this period in both
Orlando and Turkey, and the model picked up a strong
relationship between the “pensive face” = and these topics.
Similarly, the movie Finding Dory was released during this
time, and we see it present in the high-ranked predictions for
the tropical fish. The exploitation and mapping of these emoji-
event relationships presents interesting avenues for future
research.

For the eyeglasses emoji, the top-ranked results from our
baseline model did not contain the eyeglasses emoji. The top
four results all contain glasses in the image and a mention
of ‘glasses’ or ‘eyewear’ in the text, but the authors opted
for alternative emoji during composition. While these results
undoubtedly have a level of subjective relevance, the authors



TABLE VII

TOP RANKED DOCUMENTS FOR THREE EMOJI QUERIES. WE SEE A CORRESPONDENCE BETWEEN THE BASELINE’S PREDICTION OF CERTAIN EMOJI AND

CURRENT EVENTS, WITH RELATIONSHIPS BETWEEN Finding Dory AND THE TROPICAL FISH EMOJI, AS WELL AS SAD CURRENT EVENTS AND THE

PENSIVE FACE EMOJI. NON-RELEVANT RESULTS, LIKE THOSE FOR EYEGLASSES, MAY APPEAR SUBJECTIVELY TO BE RELEVANT BUT THERE IS CLEARLY

A NUANCE IN THE USAGE OF THE EYEGLASS EMOJI THAT IS BEING OVERLOOKED.

rt U : glasses ... no
glasses ... glasses

rt U : the bigger the
better when it comes
to eyewear ! by U .
london

rt U : glasses or no
glasses

graduation part N : my
favorite fish in the sea

it U : it’s a fishy
kinda day ... fish plat-
ter and salmon &
smoked UNKNOWN
fish cakes

N days to go !
just keep swimming

Query: = &9

1 you can’t imagine (
how much i miss you
#facetimemenash

JE—

2 rt U : so sad #orlando ——

#rip
Orlando

3 rt U : this is so sad
#prayforturkey

4 my heart goes out

to the families and
friends who lost their
loved ones terrible
and sad news !
#istanbul

glasses

swimming swimming
UNKNOWN

rt U : i found dory

clearly felt that other emoji were called for. Perhaps the
eyeglass emoji is considered too redundant when the content
is already contained in both the text and images. Learning
to identify and exploit these subtle distinctions is an open
problem for future, improved models.

VII. CONCLUSION

In this paper, we have approached emoji as a modality
distinct from text and images. There is sufficient motivation
for doing so, and considerable future opportunities for research
and applications with the emoji modality. We have proposed
a large scale dataset of real-world emoji usage, containing
the semantic relationships between emoji and text as well as
emoji and images. We have defined three challenge tasks with
evaluation on this dataset, and provided baseline results for all
three. We have looked at the problem of predicting emoji from
text and/or images, both with the use of ample training data
and in the absence of any. We have also looked at the problem
of using emoji as queries for cross-modal retrieval. Emoji
are everywhere, and are becoming only more pervasive. They
already possess a distinct semantic space that can be utilized
as a strong information signal as well as a novel means of
interaction with data, through both query-by-emoji as well as
emoji summarization of content. Furthermore, their semantic
richness will only increase as new emoji continue to be
introduced. It is our hope that this work and the challenge tasks
defined within will spur further research and understanding of
emoji within the multimedia community.
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