Watch-It-Next: A Contextual TV
Recommendation System

Michal Aharon', Eshcar Hillel', Amit Kagian', Ronny Lempel?, Hayim
Makabee, and Raz Nissim!

1 Yahoo Labs, Haifa, Israel,
michala,eshcar,akagian,raz@yahoo-inc.com,
2 Outbrain, Netanya, Israel

Abstract. As consumers of television are presented with a plethora of
available programming, improving recommender systems in this domain
is becoming increasingly important. Televisions sets, though, are often
shared by multiple users whose tastes may greatly vary. Recommendation
systems are challenged by this setting, since viewing data is typically col-
lected and modeled per device, aggregating over its users and obscuring
their individual tastes.

This paper tackles the challenge of TV recommendation, specifically aim-
ing to provide recommendations for the next program to watch following
the currently watched program on the device. We present an empirical
evaluation of several recommendation methods over large-scale, real-life
TV viewership data. Our extentions of common state-of-the-art recom-
mendation methods, exploiting the current watching context, demon-
strate a significant improvement in recommendation quality.

1 Introduction

In recent years, online experiences have made increasing use of recommendation
technology and user modeling techniques. Media sites recommend what to read,
music streaming sites recommend what to listen to, VOD subscription services
recommend what to watch, and more. In many of these instances, recommenda-
tion effectively transforms an online service to be personalized - tailored to its
single or primary user. This occurs when recommendations are exposed in an ex-
perience consumed through a personal device such as a smartphone or a laptop,
or when they are exposed on personal accounts such as a social network account.
However, in other cases recommendation technology is applied in settings where
multiple users share an application or device. Examples include game consoles
or high end smart TVs in household living rooms, family accounts in VOD sub-
scription services or eCommerce sites, and shared desktops or tablets in homes.
These multi-user cases represent a challenge to recommender systems, as recom-
mendations given to one user may actually be more suitable for another user.
In general, the utility of recommendations in multi-user settings is lower, some-
times to the point of frustrating users when the recommendations they receive
are dominated by items suitable for others.



This paper tackles the TV recommendation problem by applying context to
implicitly disambiguate the user, or users, that are watching it. Specifically, we
address the household smart TV situation, where a television set runs software
that identifies what is watched on it, and taps that knowledge to recommend
to its owners what they should watch at any given time. Obviously, individual
household members may have very different viewing habits and tastes. Further-
more, when certain combinations of household members watch TV together, they
may watch programs that differ from what any of them would have watched
alone. Thus, every combination of viewers at any time may require different
recommendations.

A key observation we tap is that often viewers watch multiple programs
in succession, in what we call a TV wiewing session. Thus, a given watched
show influences our prior belief over the show that might be watched next. The
data at our disposal does not identify which household members were watching
television at any point in time, hence we measure the accuracy of predicting
the next watched show — as is common in offline evaluation of recommendation
algorithms, we associate improved prediction with better recommendation.

Our methods decouple the recommendation from the learning algorithm that
produces the model. Essentially, we exploit models produced by context-less learn-
ing in order to produce contextual recommendations. This allows our recom-
mender to easily work with any learning component that maps users and items
to low-dimensional vectors, and to benefit from any optimization improving this
component. Specifically, trained models leverage the currently watched show as
context for recommending the next show to watch, without changing how mod-
elling is performed. To determine the affinity of the individual(s) watching the
device and a show, we perform a simple 3-way product of the vectors representing
the device, the currently watched show (context), and the shows to potentially
watch next (items). The context enables the algorithm to recommend signif-
icantly more relevant watching options than those output by state-of-the-art
context-less recommenders.

We implemented a recommender system, WatchltNext, that demonstrates
the usefullness of our methods on top of two learning models: Latent Factor
Modeling and Latent Dirichlet Allocation. We provide an empirical analysis of
WatchItNezt on two recommendation scenarios: (1) exploratory setting focusing
on recommending items which have yet to be consumed by a user (e.g., for a rec-
ommended TV series, no episode has been previously watched?), and (2) habitual
setting where recommendations also include items that were previously watched
on the device (such as previous episodes of a series). Using large-scale real-life
offline viewing data, which processed 4-months long viewing histories of 340,000
devices*, we demonstrate improvements over these two TV recommendation sce-
narios. Our personalized and contextual recommendation methods significantly

3 We model viewing patterns at the series level, not at the episode level.
4 We are working towards getting this data published under the umbrela of the Yahoo!
Webscope Program http://webscope.sandbox.yahoo.com.



outperform personalized non-contextual as well as contextual non-personalized
baselines.

The rest of this paper is organized as follows. Section 2 surveys background
and related work. Section 3 presents the algorithms used to tackle the problem.
Section 4 details the experimental setup and Section 5 reports our experimental
results. We conclude in Section 6.

2 Background

This section describes two methods that serve as building blocks in our algo-
rithms section, followed by a review of previous work related to the TV and in
general, the multi-user device recommendation problem.

2.1 Building Blocks

Latent Factor Model (LFM) Collaborative Filtering methods analyze rela-
tionships and interactions between users and items according to consumption
patterns or user ratings. Latent Factor Modeling is a common approach in this
field [19]. Following the assumption that the underlying behavioral pattern is
low-rank, LFM approximates a user-item relationship matrix as a multiplication
of two low rank matrices, one representing the users and the other representing
the items. Therefore, a (latent) vector 4 € R™ is assigned for each user, and
another vector 7 € R™ for each item. The recommendation score for user u and
item 4 is computed by the inner product of the corresponding vectors, (i, ).
Often, the latent vectors are modeled using an iterative optimization process,
such as gradient descent.

Latent Dirichlet Allocation (LDA) Latent Dirichlet Allocation is a gen-
erative probabilistic model of a corpus, originally proposed for modeling text doc-
uments [9]. The intuition behind this model is that documents exhibit multiple
topics, which are distributions over a fixed vocabulary W. The LDA algorithm
performs data analysis to compute an approximation of the conditional distribu-
tions of the hidden variables (topics), given the observed variables (words of the
documents). In its standard application, LDA gets as input a set of documents,
along with their bag-of-words representation, often represented as a sparse ma-
trix in which the (7, d) entry is the number of times the word ¢ appeared in the
document d. It produces a set of n topics, where each topic is a multinomial
distribution vector in RIW!I representing the probability of each word to appear
in a document discussing that topic. The documents’ latent topics can later be
inferred according to the words they contain.

2.2 Related Work

Standard recommender systems log viewing history per device. A possible ap-
proach to enhance personalization in multi-user devices is using context-aware
and in particular time-aware recommender systems. In the smart TV use case,



this is backed by the assumption that each member of the household has regular
time slots in which she watches TV. For example, children are more likely to
watch TV in the afternoon than late at night.

We review the general context-aware approach, existing video and TV content
recommendation systems, and some papers that handle the multi-user problem
in other domains, and compare these solutions with ours.

Context-Aware Recommendations Context-Aware Recommender Systems
(CARS) exploit information on the situation in which the user is interacting with
the system to improve rating predictions and provide more relevant personal-
ized recommendations. Adomavicius et al. [1,2] distinguish three main types
of CARS: (1) those based on pre-filtering, which select the data that will be
modeled according to the target recommendation context, (2) those based on
post-filtering, which adjust the recommendation, e.g., by filtering or weighting
the recommendations according to the target context, and (3) those based on
contextual modeling, which incorporate contextual information into the model it-
self. Both pre- and post-filtering have the advantage of using any non-contextual
algorithm while providing context-aware recommendations.

Pre-filtering techniques such as item splitting [5] and micro-profiling [3,21]
generate contextual models based only on the relevant items or users data, which
may be sparse. These techniques also require knowing the explicit context, while
in some cases the context can only be derived implicitly.

Many works devise new contextual modeling algorithms. Some are for general
purpose, such as tensor factorization [17,22], factorization machines [20], and
context-aware factorization [4,14,16]. Others specifically aim at improving mu-
sic recommendations [13] by extending the LDA model, improving Web search
ranking via incorporating context into factorized models [23,25] or learning a
variable length Hidden Markov Model [10]. These algorithms are often complex,
introduce a large number of model parameters to be learned, and are mostly not
available as off-the-shelf solutions.

Our work adopts a two-phase post-filtering approach. We compute an initial
score while considering the current item context, and then weigh this score using
the time of day as an additional context. The advantage of our approach is that
it allows us to leverage available contextual information while using a standard
non-contextual model.

Time-aware recommender system utilze the time as the main context of the
recommedation. The main disadvantage of this approach is that it delineates a
static mapping between users or groups of users, which we refer to as entities, and
time slots. This is often not a valid assumption, as people may switch preferred
times for watching TV. Our proposed framework supports a dynamic approach,
which — in addition to the time of day — also relies on the currently watched
show as context for recommending the subsequent show to watch. Our main
assumption is that the currently watched show can implicitly serve as a dynamic
entity-proxy. For example, consider a morning in a household where either a child
or an adult is watching the TV. Whether the current show is “Good Morning



America” or “Dora the Explorer” should affect the recommendation of what to
watch next.

Xu et al. [26] uses LDA topic modeling in order to extract the browsing
context of users. Their recommendation algorithm differs from ours as it only
considers the similarity between the active browsing session (item context) and
browsing access patterns (items topics) without considering the model of the
active user.

Video and TV Recommendations Video and TV content recommender
systems tackle the multi-user problem in different ways. Some systems, like [6]
ignore this problem, others [15,27] recognize that multi-user devices present
a challenge for personalized recommendations, but do not try to address this
issue. Netflix [11] and Android [18] suggest actively switching between users of
a single device, other TV content recommnders [7,30] also ask users to log-in
and collect their explicit feedback. Although it is technically possible for users
to identify themselves by signing into the device, very few users currently log-in
while watching TV.

Some recommendation systems for interactive TV platforms [29] utilize time
as context by performing tensor factorization on user-item-context tensor. In
contrast, our algorithm only trains simpler, non-contextual models, and applies
both temporal and sequential context when serving the recommendation.

YouTube also recomends users which video to watch next [8,12]. The problem
of video recommendation, however, is different as the inventory is not limited,
and more importanly the input is less noisy, since users must be active in choosing
the video, and the system can leverage explicit feedback by the users.

Recommending to a Multi-User Device Television sets are a prime example
of multi-user devices, however this setting is tackled also in other domains.

The work of Zhang et al. [28] focuses on the identification of users sharing
an account. They developed a model of composite accounts as a union of linear
subspaces, and then applied linear subspace clustering algorithms to identify the
users. They also defined a statistical measure of the compositeness of an account,
which is similar to our concept of device entropy (see Section 5.1). While their
model is built on top of explicit ratings provided by users, our work is based on
implicit signals.

A recent work by White et al. [24] explores personalized web-search on shared
devices. They present methods for identifying shared devices, estimating the
number of searchers on each device, and attributing new queries to individual
searchers. The estimated number is used to guide a k-means clustering in segre-
gating the device search log into logs of k searchers. A new query is assigned to
a cluster by applying a similarity score that is based on features such as topic,
time, and query length.



Recommender Description

General Pop General popularity of item ¢

Temporal Pop Popularity of i at time-of-day ¢

Sequential Pop Popularity of ¢ watched after ¢

DevicePop Popularity of ¢ within device d

DevicePop + X Device Pop combined with a recommender X

LFM Latent Factor Model with stochastic gradient descent
LDA Latent Dirichlet Allocation applied as an LFM recommender
Sequential LEM/LDA|LFM/LDA with sequential context

Temporal LEM/LDA |LFM/LDA with temporal context
TempSeqLFM/LDA |LFM/LDA with both sequential & temporal contexts

Table 1: Recommenders’ Descriptions

3 Algorithms

This section describes the recommendation methods that were employed and
compared in this work. We start by presenting in Section 3.1 several simple
memory-based approaches that are popularity-oriented. Each of these approaches
focuses on a different aspect of the data, such as the time-of-day, the current
item being watched, and the history of a given device. The objective of these
memory-based recommenders is to examine the potential power of various signals
by putting them to use with basic and simple approaches. These methods serve
as baselines in our evaluation section. We continue by describing in Section 3.2
how two collaborative-filtering methods are employed in order to produce per-
sonalized recommendations: one is a Latent Factor Model (LFM) and the other
harnesses the Latent Dirichlet Allocation (LDA) algorithm. Finally, we describe
in Section 3.3 how the contexts of the currently watched item and the time of
day context are incorporate into these personalized methods. The way we utilize
the context of the currently watched item is a main contribution of this work.
It explains how we extend the standard factorization inner product into a 3-way
score calculation that exploits the available knowledge of what is being watched
on top of a conventionally trained non-contextual model. Table 1 summarizes
the recommenders we experimented with including their high level description.

3.1 Memory-Based Popularity Baselines

General Popularity The General Popularity Recommender (GeneralPop) is
a simple memory based method. This recommender takes the portion of devices
that watched an item i to be i’s score for all devices, which makes it a non-
personalized recommender. The general popularity score for an item i is:

General Pop(i) = (#devices that watched 1)/ #devices

Temporal Popularity A natural refinement to GeneralPop is considering the
time when the recommendations are to be consumed. As different items are



popular at different times of day, refining the popularity measurement to con-
sider the time of recommendation is expected to improve the relevance of the
recommended items. The Temporal Popularity Recommender (TemporalPop)
measures the item’s popularity in a specific time-of-day ¢, relative to its general
popularity. It is a non-personalized recommender that for all devices calculates
the score of item i at time ¢ as:

Temporal Pop(i,t) = Popularity(i|t)/General Pop(i),

. . _ #devices that watched i @time(t)
where POpIdaTZty(dt) - #active devices @time(t)

gregation of a one-hour-granularity time slot (e.g. 8:00-9:00) over all days in the
training data.

, and the time(t) is an ag-

Sequential Popularity The main contextual aspect of this work is what to
watch next after the current show. The Sequential Popularity Recommender
(SequentialPop) scores items according to their conditional popularity of being
watched sequentially after a specific item. Given the currently watched item c,
the score of an item ¢ to be watched next, for any device is:

ti ‘ tched
Sequential Pop(ilc) = #times i was watched after ¢

#times item ¢ was watched

This method is non-personalized as the score reflects the popularity of watching
these two items in an ordered sequence independently of a specific device. We
also experimented with a personalized version of SequentialPop, that only counts
the number of times a given device d watched the two items consecutively, but
found the training data to be too sparse.

An additional natural baseline is a recommender that simply recommends
the next show on the same channel. However, since our data lacks the channel
information, we cannot determine whether the user actively changed the channel
or stayed on the same channel. The SequentialPop recommender is the closest
approximation of this baseline, as a high probability of two shows being watched
consecutively is a good indication of them airing on the same channel.

Device Popularity The Device Popularity Recommender (DevicePop) relies
on the assumption that users re-watch items they already watched in the past.
As such, it fits well to the habitual setting that include recommendations of items
previously watched by a given device. DevicePop is a personalized memory based
method in which the score for device d and item 7 is:

DevicePop(d, i) = #times device d watched item i

The weak spot of DevicePop is on items that were seldom or never watched before
on a given device d, as DevicePop will induce score ties between large sets of
such items. In order to overcome DevicePop’s inability to differentiate between
such items, we often combined it with an additional recommender by adding
their scores together. We denote such combinations as DevicePop + X, where X
is the combined recommender. Note that DevicePop is clearly not suitable for
the exploratory setting and was not tested in it.



3.2 Collaborative Filtering Methods

As basic personalized recommenders, we use two methods that rely on latent
factors or topics: the first is a Latent Factor Model and the second is an applica-
tion of Latent Dirichlet Allocation. Both methods output two matrices as their
resulting models: a |D| x n matrix MP and an n x |Z| matrix MZ, where D and
T are the sets of all devices and items respectively. Each row of MP and each
column of M7 are vectors corresponding to a device and an item respectively.
We denote the matrix vectors corresponding to device d and item i as M (row)
and M7Z (column) respectively. n is the selected latent dimension that represents
n latent factors or topics. In our experiments we found the value n=80 produces
the best results. The standard LFM inner product of M% and M7 reflects the
affinity between d and i. Formally, if d = MdD and i = MZ the recommendation
score is calculated as:

n - —

R(d.i) = (d.i) =Y d-ik (1)

k=1

LFM with Stochastic Gradient Descent As a state-of-the-art recommen-
dation method we used LFM optimized using Stochastic Gradient Descent. The
cost function we used for optimization is a log-sigmoid function that penalizes
watched items with a low score and non-watched items with a high score:

cost(d, i) = —log(Sig(R.(d,i))),‘ if d wa‘.cched i,

—log(1 — Sig(R(d,7))), otherwise,
where Sig(x) = H% and R(d, 1) is the score depicted in Equation 1. To avoid
overfitting, we used early-stop validation to determine the number of training
iterations. This approach is denoted as LF M in the rest of the paper.

LDA as a Collaborative Filtering Recommender To apply LDA on TV
data, every device in the data is considered to be an input document for LDA and
every item watched by that device is considered to be a word in that document.
Multiple watches of the same item by a device correspond to a word appearing
multiple times in the document. LDA’s assumption that documents belong to
multiple topics fits our case well — often multiple users, possibly with varying
tastes, share the same TV set. Different combinations of the viewing users may
have different “topics” of interest, or “tastes”, that describe a given device.
LDA models each device as a mixture of topics that relate to the combinations
of entities that share the device.

We used an existing LDA implementation® to produce the M7Z matrix from
which we inferred the MP matrix. Each row in MP corresponds to the proba-
bilities of a given device to watch each of the n latent topics and each column in
M7 corresponds to the probabilities of a given topic to generate a view of each

5 LDA package by Daichi Mochihashi, NTT Communication Science Laboratories,
http://chasen.orq/% TEdaiti-m/dist/lda/



of the items in the data. In other words, Mgk = P(k|d) and MZIk = P(i|k).
Thus, applying Equation 1 on d = MdD and i = M7? provides an estimation of
the probability that item 7 will be watched on device d:

R(d,i) = Z:ﬂ dy, iy = Z::1 P(ilk) - P(k|d) = P(i|d)

3.3 Contextual Personalization

Personalization Using Sequential Context Equation 1 considers only the
device d and the item i. Given that we also know the context of a currently
watched item ¢, we can combine it into the recommendation score. Our as-
sumption is that MZ, the latent representation of ¢, can provide information
regarding the “taste” of the entity currently watching it. Intuitively, promot-
ing agreement with ¢ may refine the reliance on the latent representation of the
device, which encapsulates together the “tastes” of multiple viewers. We thus ex-
tend the standard inner product calculation into a 3-way calculation that takes
¢ into account. This contextual recommendation score is the sum of the triple
element-wise product of the vectors d = MdD, ¢=MZL andi=M%:

R(d,i,c) szzl dy. - €. - i, (2)

As LFM model values are often negative, we normalized LFM’s model M*
by adding the absolute value of MZ’s minimal entry to all entries, resulting
with all non-negative item factors. The MP model is unaffected and may con-
tain negative values. This normalization makes sure that for a megative user
factor dj, the final score will decrease as the item factors ¢, and 7; increase
and vise versa. Without this normalization, the final score would have decreased
when all three factors agree with negative values (multiplication of 3 negative
values). Note that for using Equation 2 there is no need to change the training
procedure or the existing models M? and MZ. The modification is only in how
the recommendation score is computed. We denote applying the sequential con-
text of the currently watched item on LFM and LDA as SequentialLFM and
Sequential LDA.

Personalization Using Temporal Context To apply temporal context into
our personalized recommenders we take a post-filtering contextual approach.
Basically, we combine a given recommender with the temporal context by mul-
tiplying the recommendation score R(d,i) with the TemporalPop score of item
1 at time ¢t. Thus, we promote items in times of the day when they are more
popular while maintaining the personalized aspect. In case R(d,i) < 0 we di-
vide R(d, i) by TemporalPop so that a high TemporalPop score will improve the
recommendation score by making it “less negative”. For example, for LFM:

3)
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Total| Train| Test
Months 4 3 1
Devices|339,647(339,647|311,964
Items | 19,546| 17,232| 11,640

Table 2: Data set numbers

R(d,7) xT {Pop(i,t if R(d,7) >0
Temporal LEM (d,i,t) = Temporal(R(d,1),i,t) = ( ’l) X - empora op(z‘, ), I R( ’Z) =7

R(d,i) = Temporal Pop(i,t), otherwise.
where R(d, 1) is the non-contextual LFM score. We denote the LFM and

LDA recommenders, combined with a temporal context as TemporalLFM and
Temporal LDA.

Temporal and Sequential Context Composition It is simple to combine
the temporal context on top of a sequential context recommender. For exam-
ple, applying both on the LFM recommender is a composition of the temporal
context function over the SequentialLFM score:

R(d,i,c,t) = Temporal(Sequential LF M (d, i, c),i,t)

in accordance with Equations 2 and 3. The composition of temporal context over
Sequential LF M and Sequential LD A is denoted as TempSeqLFM and TempSe-
qLDA, respectively.

4 Experimental Settings

4.1 The Data

Our analysis is based on broadcast viewership data that is collected from smart
TV devices in households within the United States. The raw data is comprised
of a set of device id, item id, timestamp triples. The item id uniquely identifies
a series, not a specific episode. Neither the identity of the individual watching
the show nor the channel on which the show is being broadcast are available to
us.

Data was collected for 340,000 devices, which watched 19,500 unique items
over a period of 4 months in early 2013 (exact numbers are reported in Table 2).
We consider the first 3 months as training data — composed of more than 19
millions device-item pairs, while the last month is used as a test set. In the ha-
bitual setting, the test set includes all instances of consecutively watched items
— a total of 3.8 million item pairs. The exploratory setting considers only con-
secutive items whose latter item was not watched by the device in the training
data. There were 1.7 million consecutive item pairs in the test set of this setting.
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4.2 Emulating Inventories

A TV recommender system ranks items from an inventory of shows available
in a given context. However, the actual inventory available at each household
depends on its location (for local channels), provider (cable, satellite), premium
channel selections, subscriptions, and more. Our data lacks this information. We
therefore need to emulate the unknown inventories.

In the evaluation stage, we go over pairs of items watched on a device in
succession in the test set. Given a device d, a pair of consecutive items (c, )
watched by d in the test set, and the time ¢, (when the device finished watching
¢ and started watching ¢), we emulate Z. 4, the inventory of items available for
watching after ¢ at time ¢, as the set of all shows j that were watched by some
device while d watched i. In addition, we require that for every show j € 7.,
the pair (c, 7) has been watched consecutively by some device in the entire data
set (train and test portions). This procedure approximates the real TV lineup
at time t on devices where show c is available. In the habitual setting, this
procedure results in inventories comprising of 390 items on average. In addition,
in the exploratory setting, items watched by the device in the training data are
removed from the inventory for this specific device. This reduced the average
size of inventories to 345 items.

4.3 Evaluation Metric

The metric used in our empirical evaluation is the Awverage Rank Percentile
(ARP) metric. ARP measures how high (on average) the show actually watched
next by the device was ranked by the recommender. Formally, given consecutive
items (c,i) watched at time ¢ by device d, we generate the inventory Z.; and
then rank all items j € Z.; using the model scoring function R(d, j,c,t). The
rank percentile is computed as (|Z.¢| — r(¢) + 1)/|Zc,t|, where r(4) is ¢’s rank in
the output of the model. ARP is the average rank percentile over all pairs of
consecutive items.

Since each recommendation instance ranks an inventory containing exactly
one “correct” answer (the show actually watched next), the per instance rank
percentile is identical to the well-known Area Under the ROC Curve (AUC) met-
ric on the ranked inventory. ARP is also somewhat similar to the well-known
Mean Reciprocal Rank (MRR) metric; however, MRR values across multiple
instances are comparable only when the lengths of the ranked lists are fixed.
Since inventory sizes vary across different sequential and temporal contexts, the
percentile in which the correct item is ranked is a better reflection of recommen-
dation accuracy than its reciprocal rank.

From the ranked inventory list only k items are presented to the users. While
in general these are the top-k items, the recommender system might apply a
diversification policy or some filtering (like in the case the user asks only for a
specific genre) that results in presenting items that are not at the top of the
list. Therefore, we prefer the ARP metric for measuring the quality of the entire
ranking over other popular metrics such as recall and precision @k that focus
on the quality of its top.
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Fig. 1: Sequential context effect (exploratory setting)

5 Experimental Results

5.1 Attributing Context to Users

We begin by establishing the usefulness of the currently watched show as a
context for recommending what to watch next. To this end, we compared sev-
eral variations of LFM and LDA in sequential context (according to Equa-
tion 2): (a) using the currently watched item, (b) using a random item previously
watched on the device, and (c) using no context. Figure 1 depicts the perfor-
mance of these recommenders. The improvement in recommendation quality is
clear when using the sequential context item, raising the ARP by almost 10%
over LDA, and by almost 6% over LFM. Interestingly, using as a context an
item randomly chosen from shows previously watched on the device performs
worse than using no context at all. This demonstrates the importance of using
the context item from the current viewing session and not an arbitrary item.

To further establish how accurately we attribute the context to a specific user
we examine the performance of our recommenders as a function of the number of
topics in the device, namely the device topical entropy. Intuitively, entropy gives
an approximate measure of how diverse are the tastes of the users watching the
device. Lacking the information on the number of users per device, we assume
a correlation between the taste diversity (number of topics) and the number of
users sharing the device.

We use LDA’s model MP to compute the following entropy measure for a
device d:

Hy = Zog@ —P(k|d) x log P(k|d),

D
where P(k|d) = —1dx

device d belongs to topic k. A zero entropy value means that the device’s users
span only a single topic with greater than 0 probability. On the other hand, a
uniform distribution of viewed topics on a device maximizes the entropy. For ex-
ample, when entropy is around 4.5, significant topic probabilities are distributed
across more than 24° = 22 different topics. Figure 2 depicts the ARP of devices
as a function of their topic distribution entropy. To reduce noise, the results are
smoothed — each data point (z,y) represents a “sliding window”, corresponding
to the average ARP of 200 devices whose median entropy was x.

. In other words, P(k|d) is the probability that
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Fig. 2: Profile diversity effect (ezploratory setting)

ARP results for non-contextual LDA demonstrate how hard the recommen-
dation problem is across topical entropy ranges. Devices with low entropy values
are more predictable and easier for recommendation generation. As entropy val-
ues rise, the taste variance (entropy) increases and the recommendation task
becomes more difficult. As can be seen, SequentialLDA dominates LDA across
all entropy ranges. In addition, as device entropy increases, the drop in perfor-
mance is steeper for the non-contextual recommender. This implies that espe-
cially when device predictability is low (high entropy), relying on the currently
watched item as context for recommendation increases precision. SequentialLDA
maintains solid results (ARP > 0.7) even for the highest entropy values, where
non-contextual LDA degenerates almost to a random recommender (ARP of
~ 0.5). The results are shown only for LDA-based recommenders in the ex-
ploratory settings, but are consistent with their LFM and habitual settings
counterparts.

5.2 The Exploratory Setting

In the exploratory setting, a recommender should rank items that were never
watched on a given device. Figure 3 shows the performance of LFM and LDA
using different combinations of context, in comparison to the baseline recom-
menders (on the left-hand side).

One can notice that the performance of the SequentialPop baseline recom-
mender are not so high. We conclude that a recommender that simply rec-
ommends to stay on the same channel will come up with similar results. Our
non-contextual LFM and LDA recommenders are also comparable with Sequen-
tialPop. Sequential context is shown to improve performance for both LFM and
LDA. Adding temporal context to non-contextual recommenders yields a greater
improvement, surpassing the TemporalPop baseline. The clear winner in both
cases is the recommender that combines both sequential and temporal context:
TempSeqL DA displays a 27.5% ARP increase over the non-contextual LDA.
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Fig. 4: ARP in the habitual setting

5.3 The Habitual Setting

Figure 4 displays ARP results for the habitual setting. Looking at Figure 4a,
we find that adding sequential context to the LDA recommender gives a minor
increase in accuracy, while adding both contexts (TempSeqLDA) gives a 11.3%
increase over LDA and a 9% increase over SequentialLDA. In general, the ha-
bitual setting is considered to be easier as users exhibit repeated consumption
patterns of TV shows. This can be observed in the relatively strong performance
of non-contextual methods. Still, when considering these methods as baselines,
the advantage of combining them with context is evident.

DevicePop is expected to be a solid recommender in the habitual setting.
However, its main weakness is dealing with previously non-watched items. To
counter this weakness, we experimented with combining DevicePop with other
recommenders. Figure 4b shows results for four such combinations. Combining
DevicePop with LDA and SequentialLDA increase ARP by 7.7% and 14% re-
spectively. Combining DevicePop with TemporalPop yields a 18.7% increase in
ARP, surpassing TempSeqLDA, which is given for reference on the left-most col-
umn. Finally, combining DevicePop with TempSeqLDA achieves an ARP > 0.9,
which demonstrates the power of employing all contexts together.
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6 Conclusions and Future Work

This work addresses the recommendation challenge presented by multi-user Smart
TV devices through leveraging available context. We show how existing person-
alization models can tap real time information — temporal and sequential con-
texts — to significantly improve the recommendation quality of the program to
watch next on the device. Specifically, we extend the common matrix factoriza-
tion inner-product recommendation score into a 3-way product calculation that
considers sequential context — namely, the currently watched item — without
changing the standard learning procedure or model.

Our experiments demonstrate that using context significantly improves rec-
ommendation accuracy, in both memory-based and collaborative filtering ap-
proaches; and that per context used, collaborative filtering schemes outperform
the corresponding memory-based counterparts. The positive contribution of con-
text is due to it “narrowing” the topical variety of the program to be watched
next on the device. While tapping temporal context alone performs quite well in
both the exploratory and habitual settings, enhancing it with sequential context
results in significant additional accuracy gains. Finally, in the habitual setting,
which is typical for TV, prediction accuracy improves when explicitly accounting
for repeated item consumption patterns.
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