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ABSTRACT

NoSQL databases were initially designed to provide extreme
scalability and availability for Internet applications, often
at the expense of data consistency. The recent generation
of Web-scale databases fills this gap, by offering transac-
tion support. However, transaction processing implies a sig-
nificant performance overhead on online applications that
only require atomic reads and writes. The state-of-the-art
solutions are either static separation of the data accessed
by transaction-enabled and native applications, or complete
“transactification” of the latter, which are both inadequate.

We present a scalable transaction processor, Mediator,
that enjoys the best of both worlds. It preserves the la-
tencies of atomic reads and writes, without compromising
data safety. We introduce a lightweight synchronization
protocol that enables conflict resolution between transac-
tions and native operations that share data in a distributed
database. We evaluate Mediator’s implementation on top of
the HBase key-value store on a large-scale testbed, and show
that it substantially outperforms the traditional approach on
a vast majority of mixed workloads. In particular, Mediator
achieves a significantly larger throughput for all workloads
in which the fraction of native operations exceeds 50%.

Categories and Subject Descriptors

H.2.4 [Database Management|: Systems— Transaction
processing, Distributed databases

General Terms
Algorithms, Reliability, Performance

1. INTRODUCTION

Modern Internet applications employ data stores that scale
to the entire population of online users. For example, per-
sonalized content recommendation services require maintain-
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native trans trans trans

~+ none + short + long
Read 3.9 5.2 6.0 9.2
‘Write 8.3 9.5 10.3 14.0

Table 1: The impact of transactification (trans) on HBase
native operations latencies (ms). Transaction processing
adds a surplus that grows with the length of transactions
executed in the background (none, short, long).

ing profiles for hundreds of millions of unique users. Tradi-
tional SQL data management systems cannot scale up with
these requirements, leading to a new generation of not-only-
SQL, or NoSQL, databases — e.g., Google’s Bigtable [§],
Apache Hadoop HBase!, etc. These technologies have been
designed for extreme simplicity (key-value store API), scala-
bility (data partitioning across thousands of machines), and
reliability (redundant storage). In parallel, the proliferation
of affordable high-end hardware (multi-core CPU’s, inexpen-
sive RAM, SSD storage) enabled building NoSQL databases
capable of serving data at memory speeds [3, 12, 23].

Historically, NoSQL databases only allowed atomic reads
and writes of individual items. More recent systems (e.g.,
Google’s Percolator [20] and HBase’s Omid? [25]) introduce
transaction processing [15] for complex applications that re-
quire ACID semantics while accessing multiple items. No-
SQL transaction processors implement consistency models
extensively studied by the database community [18, 13].
They have been shown to scale well with the database size.

Transaction processing does not come for free. FEvery
transaction incurs latency penalties at its begin and commit
boundaries. In throughput-oriented applications that per-
form long transactions latency is not of big concern, and in-
deed the overhead is minor [25]. However, it is well-pronounced
in online, interactive settings, which are the main focus of
this work. The faster the underlying database is, the larger
the toll. Table 1 exemplifies the impact of “transactifying”
HBase reads and writes by Omid in a high-speed environ-
ment (fully evaluated in Section 5). Latencies start growing
as every operation is framed as a transaction (column 2).
They double as part of the traffic is batched in short and
long transactions (columns 3 and 4, respectively).

We would like to avoid automatically converting the atomic
database operations into transactions. Unfortunately, run-
ning them side by side with transactional traffic on shared
data without any coordination is error-prone. Consider, for

1http ://hbase.apache.org/
Zhttps://github.com/yahoo/omid



example, an imaginary social application, in which user sta-
tuses can be either directly posted by the users, or specu-
lated by the system, based on a variety of signals (status
history, location, time of day, sensor data, friends’ posts,
etc.). In the latter case, the system updates the status un-
less the user has recently posted a new one. Therefore, it
performs a transaction that (1) reads the user’s status, and
possibly some other data, (2) does some computation, and
(3) writes the status back. In contrast, a human-originated
status update is blind — it must complete in the real time,
and needs not be transactional. In a non-coordinated imple-
mentation, the transaction is not aware of this update, and
may overwrite it with a stale speculated value.

An additional problem with the non-coordinated design
is exposure to uncommitted data. The transaction process-
ing layer prevents transactions from reading each other in-
termediate modifications that may eventually roll-back [15].
However, in a heterogeneous environment, native reads can
retrieve transaction’s dirty writes.

Our goal is to preserve the original performance of native
operations while maintaining the familiar consistency guar-
antees for them as well as for transactions. This challenge
is amplified in distributed databases, in which the data is
partitioned among multiple servers. In this context, any so-
lution must take care not to impede the datapath scalability,
by introducing minimum synchronization.

We present Mediator — Mixed Database Access Transac-
tion Oracle — a scalable transaction processor that guaran-
tees data consistency in the presence of native operations.
To the best of our knowledge, this problem has not been
addressed by the database community before.

We establish a consistency model for systems supporting
transactions and native operations. Namely, we extend the
popular serializability [18] and snapshot isolation (SI) [13]
models to accommodate the native traffic semantics. The
extension is not straightforward since native operations are
not captured as transactions, and the consistency require-
ments are relaxed for them. The formal definition of the
models and Mediator’s correctness proofs are deferred to
the full version of this paper [6].

Similarly to earlier work [24, 25], Mediator exploits multi-
version concurrency control at the database layer to imple-
ment its consistency model. The unique challenge is in-
stalling a logical order between transactions, which are or-
dered by a centralized logical clock, and native operations,
accessing multiple independent servers. We introduce tem-
poral fencing — a novel protocol that loosely synchronizes
the servers’ local clocks with the global clock. The algo-
rithm trades performance optimization of native operations
for an extra overhead imposed on transactions.

We implement a working prototype of Mediator on top of
HBase, and extensively evaluate it on a distributed testbed.
We study Mediator’s performance tradeoffs by comparing
it to an Omid-powered system that automatically converts
native operations into transactions. The results emphasize
the performance impact incurred to native traffic by Omid.
More importantly, we show that Mediator’s overall system
performance is superior for a vast majority of the considered
mixed traffic patterns. In particular, its throughput is higher
for all workloads that contain at least 50% native operations.

The rest of this paper is structured as follows. Section 2
sketches Mediator’s system architecture. Section 3 infor-
mally presents mixed traffic semantics, and Section 4 de-

scribes the algorithms implementing two consistency mod-
els. Section 5 depicts and analyzes the evaluation results.
Finally, we survey related work in Section 6, and conclude
with Section 7.

2. SYSTEM OVERVIEW

Mediator operates on top of a distributed key-value store
with a get/put API that provides a read/write access to data
items identified by unique keys. For scalability, the data can
be partitioned over multiple nodes. In this context, all ac-
cesses to a given item are served by a single node (database
server). The get/put API is called native, in contrast with
Mediator’s API that is transactional. The database serves
both types of traffic. Native clients are unaware of concur-
rent transactions.

Mediator assumes multi-version concurrency control [15]
in the underlying database. Namely, every update creates
a new version of the data item, and multiple versions can
be accessed in parallel. The transaction processor main-
tains a global logical clock to timestamp all transactional
writes. The execution is optimistic — i.e., each transaction
runs unobstructed until commit, whereupon consistency is
enforced. At that point, semantic conflicts are detected
through version timestamps, and the compromised trans-
actions are aborted.

Mediator shares many design principles with Omid [25].
Similarly to Omid, Mediator employs a standalone transac-
tion status oracle service (T'SO), which maintains the clock
and tracks the state required for guaranteeing the safety
properties. Transactional clients use this context to read
the correct data versions and to timestamp their writes. A
transaction communicates with the TSO twice — upon begin,
to retrieve the required state, and upon commit, to resolve
the conflicts with the concurrent transactions. The key for
scalability is keeping the TSO separate from the datapath.

The TSO is highly optimized, to prevent it from becoming
the system’s bottleneck. A transaction starts getting tracked
only once it issues a commit request. A client communicates
to the oracle the set of keys accessed by the transaction.
The Mediator TSO stores it in a compressed Bloom filter [5]
form, hence each transaction’s footprint is fixed and small.
Mediator adopts Omid’s optimization of replicating the or-
acle’s state to the client upon transaction begin, to enable
local decision-making [25]. For clients with persistent TSO
connections, this replication is incremental and efficient.

In multi-version databases, concurrent transactions are
protected from reading non-committed writes by creating
new versions with timestamps that are beyond the read hori-
zon. This approach is non-applicable in our setting, since na-
tive reads that simply retrieve the latest data versions must
be protected. Instead, Mediator clients buffer the updates
locally, and write them back upon commit. Prior to updat-
ing the database, the client atomically appends its modifica-
tion set to the write-ahead log (WAL). This is in contrast to
other transaction processor implementations [20, 25] writing
eagerly to the database. These implementations exploit the
durability of database updates and therefore avoid managing
a separate log. Mediator’s performance for the transactional
part of the traffic is therefore a-priori inferior to eager-write
systems. Section 4 describes the optimizations that target
this gap.

Since Mediator’s writes are deferred until commit, it never
needs to roll back aborted transactions. However, a failure
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Figure 1: Mediator architecture. The transaction man-
ager (Mediator client) employs three backend services —
the database, the log, and the transaction status oracle
(TSO). The database serves native clients directly, and
provides Mediator clients with a backdoor API.

of either a client or a database server in the middle of a
distributed write-back can leave transactions—that are com-
mitted in the log-incomplete. While the algorithm guaran-
tees that subsequent transactions always observe a consis-
tent database state, some of them might get blocked and
eventually abort due to dependencies on incomplete trans-
actions. To guarantee progress, the T'SO helps uncompleted
transactions finish their database update. It periodically ini-
tiates a helper process that locates their commit records in
the log, and replays them in an idempotent way [15]. Trans-
actions that failed to log their changes prior to the helper’s
execution are (possibly spuriously) aborted.

Oracle’s failures are handled similarly. Upon recovery,
the TSO replays the log, and aborts all transactions that
initiated a commit before the crash but failed to log their
changes. Hence, the volatile state that the TSO has main-
tained for them prior to the failure needs not to be restored.
Before becoming operational, the TSO sets its clock suffi-
ciently ahead of the committed transactions and the local
clocks of all live database servers, to guarantee correctness.
Obviously, until the recovery completes, no transactions can
commit, however, native operations execute regularly. The
rest of the paper focuses on non-failure scenarios.

Figure 1 depicts Mediator’s architecture, and highlights
the component API’s. We implement Mediator on top of
two open source products — a multi-versioned key-value store
(HBase) and a shared log service (Bookkeeper® [17]). Both
scale horizontally across multiple machines.

3. MIXED TRAFFIC SEMANTICS

In classical (transaction-only) implementations the ver-
sions of an item are ordered according to the temporal se-
quence of the transactions that created these versions. In-
formally, in serializable systems all transactions appear to
execute sequentially. The weaker model of snapshot isola-

3http://zookeeper . apache. org/bookkeeper/

tion decouples the consistency of the gets and the puts of
a transaction. That is, all reads within a transaction see a
consistent view of the database, as though the transaction
operates on a private snapshot of the database taken before
its first read. In addition, concurrent transactions are not
allowed to modify the same data. This ensures that among
two transactions that produced a version of an item, one
commits before the other starts.

Mixed-traffic implementations need to consider how to pin
native operations within this order. A straightforward se-
mantic for mixed traffic captures native operations as single
operation transactions. This surely guarantees no updates
are lost and no reads are dirty. However, it may introduce
unnecessary overhead on native operations.

The detour we suggest from converting native operations
to transactions is twofold. Similar to traditional NoSQL,
(i) native operations cannot abort, and (ii) no guarantees
are provided on the order of native gets in the serialization
(with respect to each other). That is, a process that sequen-
tially retrieves two different items being updated in parallel
by some transaction might observe an older version in the
second read.

We revisit our web application example to demonstrate
the main theoretical challenges of such systems. A backend
transaction txr reads the status sp of a user, computes a
refined status s and tries to update the user’s status record.
It should succeed (commit) only if the user is not writing a
new status s; at the same time. Furthermore, should the
user write a new status before txr commits, no friend of the
user (applying a transaction or native operations) should see
status so.

Figure 2a depicts an execution of this scenario. Assume
the initial timestamps of all items are 0. Transaction tx
starts (at to), reads item z (the user status) and returns
So, writes s2 to z, and finally commits. The user entry is
updated with sz only after the transaction is guaranteed to
commit (otherwise it might be visible to the user’s friends).
While ¢z is committing, after it is logged as committed and
just before it writes the new value to z (with timestamp ¢1),
a concurrent native put, op, by the user writes a new status
s1 to z.

Due to data partitioning, there is no single point of deci-
sion, and the timestamps assigned to op is determined by
the data server accomodating the item (the user record). A
possible naive approach is to associate op with the item’s
previous timestamp plus some increment. This is, however,
insufficient for correctness. For example, if op is assigned
with an arbitrary (positive) timestamp ¢, ¢ < ¢1, a friend of
the user reading the status after the transaction completes
sees status s2 and s7 is “lost”.

It is also desirable to avoid trivial solutions “separating”
native operations and transactions in time. That is, to as-
sign op with a small timestamp ¢, ¢t < to such that it is
“lost in the past”, or a very big timestamp ¢ > ¢; such that
it is “lost in the future” and never read by any transaction.
To enforce this restriction, the semantics require the serial-
ization of all accesses of transactional and non-transactional
operations to the same item by the same process to be in
the same order as executed by the process. This property is
denoted per-process item order.

To conclude, mixed traffic semantics (1) require transac-
tions to satisfy some consistency model, be it serializability,
snapshot isolation or any other model, (2) require native op-
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Figure 2: Execution example: transaction tz (process C1)
versus a native put op (process C2).

erations not to abort and (3) require operations to satisfy
the per-process item order. The formal extension of the clas-
sical serializability and snapshot isolation models for mixed
traffic appear in the full version of this paper.

4. MEDIATOR ALGORITHM

Mediator’s way to satisfy these semantics—temporal fences,
effectively partitions the logical timing of native puts into
epochs framed by transaction begin and commit operations.
We present the algorithm focusing on SI consistency; Sec-
tion 4.5 elaborates on the adjustments required to support
serializability. In what follows, write set refers to data items
written by a transaction and read set to items it reads.
A read-write transaction performs both get and put oper-
ations, a read-only transaction performs only get operations
(its write set is empty), and a write-only transaction per-
forms only put operations (its read set is empty). A put
transaction is a write-only transaction writing to a single
item.

4.1 Temporal Fences

To accommodate mixed traffic, Mediator embeds a stan-
dard centralized transaction manager, with an original mech-
anism to pin the versions produced by native puts in the to-
tal order without compromising the transactions safety. Na-
tive writes are stamped by each data server independently,
whereas transactional writes inherit the timestamps issued
centrally by the TSO. Combining the two mechanisms—one
centralized and the other distributed—requires care.

Each database server maintains a local clock. This clock
is used to stamp native puts, which in turn increase it in

increments of §. Each transaction is associated with two
values of the global TSO clock. Transaction’s reads are as-
sociated with its start timestamp, and writes with its com-
mit timestamp. Upon each database access, the transaction
synchronizes the local clock with one of these values—i.e., the
server’s clock is promoted to be (at least) this value. This
value then serves as a fence — no subsequent native oper-
ation to this server is assigned with timestamp lower than
the fence. Specifically, the § increment defer the timing of
subsequent native put operations to this server beyond the
fence value. The global clock assigning transactional times-
tamps grows by A upon each timestamp request. To avoid
the trivial time-separation solution we set A > §. This en-
sures native puts that are executed within the epoch marked
by two temporal fences, are serialized within this epoch.

In the execution example, when tz accesses the data server
for the first time, it assigns its local clock to be to (first
fence), thereby guaranteeing that op’s timestamp is greater
than to, and it is not lost in the past. Prior to writing a new
value to z, tz verifies no concurrent put (specifically, a native
one) has written to z. Upon this conflict testing, tz promotes
the local clock to t1, t1 > to + A (second fence). Therefore,
the write conflict validation is safe; the set of native writes
between to and t; is sealed. In the scenario depicted in
Figure 2b, op is assigned with timestamp ¢, to + 6 =t < t1,
tx identifies the conflict and aborts. In the scenario depicted
in Figure 2c, op’s timestamp is t1 + d = ¢, hence there is no
conflict and ¢z commits. As § < A op is not lost in the
future, and is visible to subsequent transactions.

With this in mind, Mediator’s algorithm is simple and
intuitive. The begin timestamp of a transaction is a tempo-
ral fence. A get returns the latest version of the item prior
to this timestamp. Write accesses to the data server by
transactions are deferred to commit, and a put simply pri-
vately records the key-value pair. Upon commit of read-only
transactions, no further action is required since the snapshot
property holds: a no-commit optimization. A put transac-
tion commits locally, by applying a native put thereby avoid-
ing the commit overhead: a local-commit optimization.

Other transactions apply a two-phase commit. The first
phase (conflict testing) consists of a centralized part and
a distributed part. The former generates a commit times-
tamp and tests for inter-transaction conflicts. The latter
installs the commit timestamp as a temporal fence at the
data servers accommodating the write set, and performs
the transaction-vs-native conflict test. The second phase
(write-back) logs the new values for durability, and ulti-
mately stores them in the database, making the changes
visible to other transactions and native operations.

Next, we describe the implementation details, including
the pseudo-code. The code is structured in a way that can
be easily adapted to support serializability.

4.2 Transaction Manager Implementation

The key parts of Mediator’s API implementation appear
in Algorithm 1. For simplicity, we assume that (1) a trans-
action reads and writes any item at most once, and (2) if a
transaction writes an item, it does not read it afterwards?.

A transaction is represented by a descriptor, which holds
the start and commit timestamps, as well as the write set

“These assumptions are not restrictive — modeling these (re-
dundant) operations is possible but obscures the presenta-
tion.



Algorithm 1 Mediator API implementation - get and commit
(snapshot isolation)

1: function TXGET(Timestamp ts, Key key)
2 tx + getTx(ts)
3 for RETRY_GET times do
4: (val, tsyq1)  DB.txGet(key,ts) > sync DB with ts
5: if ts,q; > latestCommitted(key,ts) then

> latest timestamp before ts in the 7SO state replica
6 tz.addToReadSet(key,val,ts,q1)
7 return val
8

txAbort(ts) > unable to read latest value

@

function TXCoMMIT(Timestamp ¢s)
10: tx + getTx(ts)
11: if readOnly(tz) then

12: return > committed successfully
13: if singleWriteOnly(tz) then

14: (key,val, ts) < tz.writeSet.first()

15: DB.put(key, val) > local write
16: return > committed successfully
17: ok < tryCommit(ts, ww)

18: if ok then

19: writeVals(tx)

20: function TRYCOMMIT(Timestamp ts, ConflictType type)
21: tex + getTx(ts)
> check txs conflicts against 7SO

22: tx.tse + TSO.txTryCommit(tx,type)
23: if tz.tsc = 1 then
24: txAbort(ts)
25: return FALSE

> check natives conflicts against DB
26: if type = ww then

27: confSet < tx.writeSet > Ww conflicts
28: if type = RW then
29: confSet < tx.readSet > RW conflicts

30: ok <+ DB.txCheckConflict(con fSet, tx.tsc)
31: if lok then

32: txAbort(ts)

33: TSO.txAbort(tzx)
34: return FALSE

35: return TRUE

36: function WRITEVALS(Transaction tx)
37: LOG.append(tz.writeSet)

38: DB.txPut(tx.writeSet, ts.)

39: TSO.txCommit(tx)

> write ahead logging
> batch write

(set of key-value-timestamp tuples). The latter is used to
identify conflicts upon commit. The implementation sup-
porting serializability also needs to maintain the read set.

A transaction begins by retrieving a unique start times-
tamp from the TSO. Similar to Omid [25], the incremental
changes of the status oracle’s state are piggybacked on the
response to facilitate local decisions.

A transactional get (TXGET) reads from the database the
latest value preceding the start timestamp. The timestamp
of the expected version is registered in the local replica of the
TSO’s state, however the value itself might not be stored in
the data server yet. A failure to retrieve the correct version
triggers a sequence of attempts to re-read this version, and
ultimately an abort in case they all fail.

A transactional put adds the key-value pair to the write
set stamped with the start timestamp. This timestamp is
used to check for conflicts upon commit.

Upon commit (TXCOMMIT) of a read-only transaction no
further action is required. A put transaction commits lo-
cally, by performing the respective native put operation.

Algorithm 2 7SO methods (snapshot isolation)

struct TxEntry {
Timestamp tsc
Status status // {ACTIVE, COMMITTED, ABORTED}
BloomFilter writeBF

class Ring {
Timestamp tSmin // earliest timestamp
TxEntry head
TxEntry tail

}

51: function TXTRYCoMMIT(Transaction tz, ConflictType type)
52: if tspmin > tx.tss then

53: return L > too long a tx - abort
54: writeK eys < getKeys(tx.writeSet)

55: new < initTxEntry(write K eys)

56: if type = Ww then

57: confSet < tx.writeSet > ww conflicts
58: if type = RW then

59: confSet < tx.readSet > Rw conflicts
60: ts < checkAndAppend(confSet, new)

61: return ts > timestamp or L

62: function CHECKANDAPPEND(Set(KeyValVersion) confSet,

TxEntry new) > atomic
63: new.tsc < getNextTimestamp() > add A
64: for current = tail — head do
65: for item € confSet do

> check conflict with concurrent txs

66: if current.ts. < item.ts then break
67: if current.status # ABORTED then
68: if isMember(item, current.writeBF) then
69: return L > conflict - abort
70: append (new,tail) > append to tail
71: return new.ts. > serialization succeeded

Other transactions invoke TXTRYCOMMIT at the TSO and
TXCHECKCONFLICT at the database, to verify transaction-
vs-transaction and transaction-vs-native conflicts, respec-
tively (first phase of the two-phase commit). Note that
the SI implementation checks for write-write (Ww) conflicts.
Then (second phase), the transaction dumps its write set to
the log and to the database.

4.3 Transaction Status Oracle Implementation

The TSO maintains an ordered circular buffer (ring) of
transaction entries. The ring’s entries describe only trans-
actions that invoked TXTRYCOMMIT, saving space and re-
dundant processing. A transaction commits by enqueuing
an entry into the ring, therefore its position in the ring is its
explicit serialization with respect to other transactions.

The TSO'’s data structures appear in Algorithm 2. A ring
entry holds the transaction’s commit timestamp, its status,
and the write set’s keys encoded as Bloom filters [5] for com-
pactness. The status is initially ACTIVE, indicating that the
transaction is serialized with respect to other transactions,
but still has to check conflicts with native puts and write to
the database. Upon a commit or abort notification, the sta-
tus is updated accordingly. Bloom filters help to efficiently
test set membership — in particular, compute the intersec-
tion between transaction write sets to detect conflicts. The
flip side of using them is manifested in false intersections,
which yield spurious aborts.

TXTRYCOMMIT detects inter-transaction conflicts. A trans-
action acquires a commit timestamp, and traverses the ring



Algorithm 3 DB methods

Algorithm 4 Adaptation for serializability support

81: function GET(Key key) > atomic
82: return lastVersion(key)
83: function puT(Key key, Val val) > atomic

84: clock < clock + &
85: put(key, val, clock)

86: function TXGET(Key key, Timestamp ts)
87: sync(ts)
88: return lastVersionBefore(key, ts)

89: function TXCHECKCONFLICT(Set(KeyValVersion) items,
Timestamp ts)

90: sync(ts)

91: for all item € items do

92: (val, tsyq1) + lastVersionBefore(item.key,ts)

93: if item.ts < ts,q; then

94.: return FALSE > conflict - not ok
95: return TRUE > no conflict - ok

> atomic
> temporal fence

96: function syNc(Timestamp ts)
97: clock <+ max {ts, clock}

from tail to head validating the write set with the preceding
non-aborted transactions. Finally, a new entry is appended
to the ring, and the commit timestamp is returned. Long-
running transactions that started before ts;min—the mini-
mum timestamp from which the ring maintains transactional
history—abort.

The ring is periodically garbage-collected — complete trans-
action entries that do not overlap with active transactions
are deleted. Transactions for which no completion notifica-
tion has been received remain in the ring until their final
status is discovered by the helper process that runs period-
ically in the background (discussed in Section 2).

The algorithm’s correctness depends on the assumption
that native put timestamps never exceed the next transac-
tion timestamp. For all practical purposes, this is achieved
by setting A > 6 (e.g., A = 2%° and § = 1 for a 64-bit value
clock). To maintain the invariant, even when no transac-
tional traffic arrives for a very long time, the TSO periodi-
cally increments the global clock by A.

4.4 Database Support

The database code adjustments for Mediator are modest.
They summarize to a new policy for managing the server’s
local clock. Local clocks synchronize with the global clock
upon transactional accesses, and incremented upon native
puts. Algorithm 3 depicts the implementation.

A native get simply retrieves the latest version of the
data item. A native put atomically increments the clock
and writes the new timestamped version to the database.
A transactional get synchronizes the clock with the trans-
action’s timestamp, which becomes a temporal fence, and
returns the latest version prior to this timestamp. A trans-
actional put simply invokes the timestamp-based put API.
The TXCHECKCONFLICT method (invoked upon commit)
tests whether a set of timestamped key-value tuple has been
modified by native puts prior to timestamp ts. The server’s
clock is atomically synchronized with ts, which becomes a
temporal fence.

4.5 Supporting Serializability
We follow the work by Cahill et al. [7] to adapt our SI al-

101: function TXGET(Timestamp ts, Key key)
102: tx + getTx(ts)

103: (val, tsya1) < DB.get(key)

104: tx.addToReadSet(key,val,tsy,q1)

105: return val

106: function TXCoMmMIT(Timestamp ts)
107: te < getTx(ts)
108: if singleWriteOnly(tz) then

109: (key, val, ts) + tz.writeSet.first()

110: DB.put(key, val) > local writing
111: return > committed successfully
112: ok < tryCommit(ts, RW)

113: if ok then

114: if readOnly(tz) then return

115: else writeVals(tx)

gorithm to serializability. Similar to it, we exploit the obser-
vations from [13], which identify distinctive conflict patterns
(dangerous structures) in every non-serializable execution.

In this context, a serialization graph is one in which nodes
represent transactions, and edges represent conflicts between
them. With mixed traffic, an edge can connect a transac-
tion with a conflicting native operation. A read-write edge
implies that a put overrides the value read by the other
transaction. The serialization graph of any non-serializable
SI execution contains a cycle with two adjacent read-write
edges, each connecting two concurrent transactions [13].

Mediator’s adapted protocol (Algorithm 4) eliminates read-
write edges in the graph by aborting the conflicting transac-
tion. This is sufficient for removing “dangerous” structures,
although spurious aborts might happen. To minimize the
number of aborts, TXGET returns the most up-to-date item
version, instead of reading the latest version written before
the transaction started as in the SI implementation.

Two transactions (or operations) writing to the same item
but not having read-write conflicts, can be serialized by the
order of their commit timestamps. Therefore, instead of
checking write-write conflicts, a transaction checks for read-
write conflicts with other transactions and native operations.
It verifies that no put operation has written a value to an
item the transaction read. That is, upon TRYCOMMIT the
TSO compares the write sets of transactions in the ring with
the read set of the processed transaction, instead of compar-
ing with its write set as in the SI implementation. Similarly,
the database-level conflict test verifies the intersection of the
transaction’s read set with native puts.

We do not assume any a-priori knowledge on the data set
of a transaction. Specifically, read-only transaction are not
defined as such in advance. Therefore, TXGET operations in
read-only transactions also returns the most up-to-date item
version. To this end, read-only transactions cannot employ
the no-commit optimization since they need to detect read-
write conflicts. The local-commit path for put transactions
still holds.

S. EVALUATION

We evaluate Mediator on a distributed testbed, and assess
the system performance (throughput and latency) metrics,
as well as the ratio of aborted transactions. The latter is
an upper bound on the ratio of false aborts, which captures
system’s negative impact on client applications, and is ex-



pected to be low. We experiment with multiple workloads
that feature different traffic mixes (varying proportions of
gets versus puts, transactional versus native operations) and
different distributions of transaction size (single-access ver-
sus bulk transactions). Mediator’s behavior is explored in
the context of snapshot isolation and serializability models.

We compare a system in which transactions are served
by Mediator and native traffic is handled by HBase with a
system in which native operations are transactified, and all
the traffic is served by Omid. For brevity, we call the first
system Mediator and the second system Omid.

We start by analyzing the overhead transaction processing
imposes on native operations. Following this, we study Me-
diator’s impact on the overall system throughput. Namely,
we explore Mediator’s and Omid’s comfort zones — the work-
load patterns for which one platform performs significantly
better than its counterpart.

5.1 Environment

We utilize a cluster of machines equipped with a 4-core
2.50 GHz Xeon(R) L5420 CPU and 16 GB RAM. All services
are implemented in Java, with the JVM using 4 GB heap.
Separate nodes are allocated to the datababse (10), the log
(10), the TSO (1), and the clients (20).

The key-value store is HBase, deployed on top of Hadoop’s
distributed filesystem, HDFS, with a replication factor of
3. The HBase database (region) servers are co-located with
HDFS storage servers (datanodes) for efficiency. The dataset
under test holds 200 million records. Each record is 1 KB
long, with a 12 bytes long key. That is, the database’s size is
approximately 200 GB, each server controlling 10% thereof.
The block cache at each server defaults to 40% of the heap.

We are interested in latency-oriented applications and there-

fore focus on configurations that serve individual operations
with low latency. We address workloads with reasonable
locality of gets — the keys are drawn from a Zipfian distribu-
tion that generates approximately a 90% cache hit rate. The
put latencies are insensitive to key distribution since HBase
servers employs LSM trees [23] that absorb multiple writes
into a memory buffer. To keep the changes to the database
layer minimal, we do not try to optimize the HBase overhead
by switching off the database’s internal write-ahead logging
(which is redundant with Mediator’s log for transactional
traffic).

We perform a large set of experiments on a variety of work-
loads. A single experiment performs 500,000 gets and puts.
Each client node concurrently drives the system’s workload
through up to 40 concurrent processes of YCSB [10], a popu-
lar load generator. The YCSB clients exercise the Mediator,
Omid, and HBase API’s, depending on the configuration.

In a single experiment, each YCSB instance drives the
same traffic pattern, therefore the cumulative workload re-
mains steady over time. In other words, each client gener-
ates the same load bandwidth, which splits independently
among (1) reads and writes, and (2) transactional and na-
tive accesses. We denote the fraction of reads by p, and
the fraction of native operations by v. In the Omid setting,
YCSB transactifies all the original native operations. In
both settings, transactional accesses are clustered in trans-
actions of varying sizes, picked uniformly at random from a
range [1,2,...,n], where n is specified by the experiment.
We denote this distribution U,,. The larger n is, the wider
the spectrum of the exercised transaction sizes is — from a

Notation Description Values

C number of concurrent clients 50, 100, ...,1200

v ratio of native operations 0,0.1,...,1

p ratio of get accesses 0,0.1,...,1

Un transaction size distribution U (singletons),
(uniform over [1,2,...n]) Ua, Uzp

Table 2: Workload parameter notation.

single access to a bulk of operations. U; is a non-realistic
workload (singleton transactions workload is meaningless)
that we use to demonstrate the local-commit optimization.
Table 2 summarizes the notation.

Medjiator log is implemented through Bookkeeper [17]. Fi-
nally, the TSO employs 1024-bits-wide Bloom filters.

5.2 Numerical Results — Snapshot Isolation

This section studies Mediator’s performance under the
snapshot isolation consistency model.

Latency Overhead on Single Operations. We start
by motivating the advantage of serving native traffic directly.
Our first experiment demonstrates the surplus to the median
latency of native HBase operations when the latter are trans-
actified with Omid. We consider three configurations: (1)
100% native traffic, (2) single-operation (U1) transactions
with background Uy traffic, and (3) the same with back-
ground Uso traffic. The workload is driven by 200 clients.
We explore a variety of read ratios (0 < p < 1).

Figure 3(a) shows the results. The penalty grows with the
fraction of writes and the background transactions’ bulki-
ness. This is explained as follows. Transactions introduce a
fixed communication overhead (round trip upon begin and
commit), and the TSO state replication overhead. The TSO
state depends on the number of keys updated by individual
transactions, i.e., for the same read/write ratio the larger
transactions populate a larger state, which translates to a
larger replication overhead, and eventually to larger laten-
cies incurred to short transactions. For example, in write-
only workloads in which transactified puts run in parallel
with Uz transactions, the put latency becomes almost twice
as large as that of the native HBase operation.

The next example provides a different perspective on the
same phenomenon. We compare the median operation la-
tency and the system throughput for the traffic of 100%
single operations (U1), in the following scenarios: (1) na-
tive operations, (2) the same, transactified with Omid, and
(3) the same, transactified with Mediator. We observe the
performance for varying numbers of clients, and draw the
throughput-latency curves. All implementations are consid-
ered in two settings — a read-dominated workload (p = 0.9,
Figure 3(b)), and a write-intensive workload (p = 0.5, Fig-
ure 3(c)). We see that even without any bulky transac-
tions in the background, Omid and Mediator are inferior
to bare-metal HBase. For example, Mediator scales to ap-
proximately 35K operations per second (ops) in the read-
dominated scenario, and to 28K in the write-intensive one,
whereas HBase achieves above 55K ops®. These results em-
phasize the potential of consolidating transactional and non-
transactional traffic within the same framework, to avoid the
overhead of transactifying the latter.

5The same HBase configuration scores much higher through-
puts for bulk I/0O. This setting is not the focus of our exper-
iment.
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Total Throughput. We now turn to our main goal —
contrasting Mediator with Omid on a wide variety of mixed
workloads. We study the Ui, Us and Uz distributions.

The U; case is an exception — Mediator is faster than
Omid in all configurations (Figure 3(b) and Figure 3(c) de-
monstrate this for two specific cases). This happens by the
virtue of its no-commit optimization (which serves single-
get transactions) and its local-update optimization (which
serves single-put transactions). Either way, Mediator client
does not communicate with the TSO upon commit skipping
consistency checks and logging, hence, the oracle’s state re-
mains void. Upon transaction begin, the state replicated to
the client is minimal (transaction timestamp), and therefore
Mediator’s overhead is smaller. Obviously, if Mediator is
faster for all-transactional U; traffic, the same holds if part
of the workload is native.

The comparison becomes interesting for truly mixed work-
loads, in which native operations run side by side with trans-
actions of different sizes. Both Omid and Mediator have
their strong points. The former is superior for transactional
traffic, since it avoids the WAL overhead (Section 2). The
latter is faster for native traffic. In this context, the cumu-
lative throughput (in terms of both transactional and native
operations) is a convenient metric for evaluating the over-
all system performance. (Note that in an environment in
which get and put operations are clustered in transactions,
the latency of individual operations is not well-defined.)

The following experiment employs 200 clients, and exer-
cises all combinations of read ratios (0 < p < 1) and native

(0 <v <1). The workload is generated by 200 clients.

access ratios (0 < v < 1). In this context, for a given read
ratio p, an equilibrium point is the smallest ratio of native
operations v for which Mediator achieves a larger through-
put. The collection of equilibrium points for a given work-
load type defines an equilibrium curve. This curve separates
Mediator’s and Omid’s comfort zones. The area above it is
the fraction of configurations in which Mediator is superior.

Figure 4(a) and Figure 4(b) portray the equilibrium curves
for Us and Uap, respectively. Every data point is depicted
with a 10% confidence interval. Mediator outperforms Omid
in a vast majority of configurations — in particular, in any
read-write mix with v > 50%. It is consistently more advan-
tageous for Uap versus Us, due a better manifestation of write
batching in bulk transactions. For both workloads, Media-
tor’s dominance is more pronounced for the extreme values
of p. For example, for p = 1, the no-commit optimization ap-
plies to all transactions, thus reducing the equilibrium point
to zero; for p = 0, the local-commit optimization applies to
singleton transactions (only part of the workload).

Figure 4(c) zooms in on how a single equilibrium point is
computed. For a given read ratio p, Mediator’s throughput
monotonically increases with the fraction of native traffic v
(which is natural, since the latter has no overhead). On the
contrary, Omid’s throughput does not grow with v. This
happens because the system wraps every individual access
as a transaction. For non-singleton transactions (s and
Uoo), the overhead grows disproportionately with v, thus re-
ducing the total throughput. The crossing of the two curves
is an equilibrium point; the vertical bars mark the areas of
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Abort Ratio. We explore the abort ratios incurred by
Mediator to user applications — i.e., the fraction of trans-
actios that get aborted due to (possibly falsely) detected
conflicts. The probability of colliding with concurrent oper-
ations grows with the fraction of updates and with the trans-
action size. The computation of the write-set intersections
is approximate, due to the use of Bloom filters. Therefore,
for write-intensive workloads, the fraction of spurious aborts
grows as well.

For short Uy transactions, the abort ratios are totally neg-
ligible (below 0.03% under all workloads). For Uz distribu-
tion, the ratio remains below 0.1% in most configurations,
but hits a high 1.78% in write-intensive settings. This frac-
tion of aborts can be reduced 10-fold by applying wider
Bloom filters, but this entails a slight performance penalty.

Scalability. Finally, we study Mediator’s bottlenecks,
to get an insight about its scalability limits. We take a
closer look at the Uy traffic pattern (p = 0.5,v = 0), for
the number of clients C' ranging from 50 to 500. Figure 5
depicts the latency breakdown by the time spent on signifi-
cant internal APT’s. In this context, the datapath calls that
happen upon commit (the native conflict check, the WAL,
and the database write) account for over 70% of transact-
ion latency, whereas TSO’s API’s consume less than 20%.
For very large numbers of clients, this fraction drops be-
low 10%, which demonstrates that the TSO scales better
than the database. The begin timestamp retrieval is a non-
negligible component. This happens due to the oracle’s state
replication that is piggybacked on this request.

The overhead of write-ahead logging might be reduced by
employing state-of-the-art shared log services (e.g., Corfu [3]
uses specialized hardware, and boasts sub-millisecond laten-
cies for loads similar to those exercised in our experiment).
The potential upside of this optimization is approximately
25% reduction of transaction latency.

5.3 Numerical Results — Serializability

We conclude our experimentation by evaluating the over-
head required to support transaction serializability. In this
setting, the algorithm incurs additional overhead (sending
the transaction’s read set to the TSSO, in conjunction with
the write set), and tests for read-write conflicts instead of
write-write conflicts (Section 4.5).

We compare the serializability implementation’s perfor-

mance with the one for snapshot isolation, by repeating the
experiment in Section 5.2, which evaluates Mediator with
transaction-only traffic (v = 0). For read-dominated work-
loads (p = 0.9), communication and processing for serializ-
ability support incurs a significant overhead — up to 30% less
throughput in similar operating points. For write-intensive
traffic (p = 0.5), the performance gap is negligible. These
results resonate well with other performance studies in the
database literature [1, 7].

6. RELATED WORK

Transaction processing is a textbook area in database re-
search [24, 15]. It appears in the ANSI SQL standards, as
well as in modern NoSQL technologies that took databases
to an unprecedented scale (e.g., [20]). The literature defines
a wealth of transaction consistency models that capture dif-
ferent perceptions of concurrency control (e.g., [18, 4]). Tra-
ditionally, client applications sharing a single database in-
stance agree on a single consistency model (or multiple lev-
els thereof that subsume each other), and pay the required
performance toll. We posit that this approach is not neces-
sarily required, i.e., it is possible to accommodate within the
same database two incompatible semantics: multi-operation
transactional consistency, and atomic read-write consistency
appropriate for simple key-value store applications.

The database community has been reasoning about trans-
action semantics since the late 70’s [18]. Serializability has
been widely adopted. The seminal paper by Berenson et
al. [4] introduced the snapshot isolation model. The lat-
ter is particularly attractive due to its implementations that
improve concurrency.

In databases that support range queries, the literature dis-
tinguishes between repeatable read (RR) and serializability
isolation levels, which subsumes RR, and extends it with a
requirement of avoiding phantom reads (returning two dif-
ferent tuple sets for the same key range to two queries run-
ning under the same transaction [15]). Should Mediator
be extended to support predicate queries, it can use the
same transaformation technique by Fekete et al. [13] to get
a phantom-free serializable implementation.

Early NoSQL databases, e.g., Google Bigtable [8], Yahoo!
PNUTS [9] and Apache HBase sacrifice strong consistency
for extreme scalability. Their safety guarantee is single-key
atomic reads and writes [2]. Google Percolator technol-
ogy [20] supports multi-operation transactions in Bigtable
for incremental maintenance of its search index. Percola-
tor implements snapshot isolation through database locks.
Omid, a transaction processor for HBase [25], supports snap-
shot isolation with a lock-free protocol. Omid also imple-
ments serializability [14]. Mediator’s design bears similarity
with Omid, however, its algorithm is profoundly different,
to capture the new safety properties.

Google Spanner [11] provides distributed transactions acr-
oss datacenter with a blend of SI (for read-only transactions)
and serializability guarantees. Spanner implements lock-free
read-only transactions and lock-based read-write transac-
tions. Calvin [22] also addresses globally distributed trans-
actions, albeit in a different way. It replaces locking with
deterministic scheduling that orders transactions through a
global consensus service. SCORe [19] is a serializable par-
tial replication protocol that guarantees read operations al-
ways access a consistent snapshot. It applies a timestamp
management scheme to synchronize the nodes handling the



transaction. Neither one of the above provide any consis-
tency guarantees to hybrid workloads targeted by Mediator.

Transactional memory (TM) [16] is a popular approach
for alleviating the difficulty of programming concurrent ap-
plications for multi-core and multiprocessing systems. TM
allows concurrent processes synchronize via in-memory trans-

actions. Our T'SO implementation is inspired by RingSTM [21]

— an implementation that allows accessing the same items
from inside and outside a transaction. RingSTM is not
geared for distributed environments, hence our challenges
are different.

7. CONCLUSIONS

We presented Mediator — a transaction processing system
for Web-scale NoSQL databases. Mediator mitigates the
consistency gaps that arise when transactional and native
operations are allowed to share the same data in a straight-
forward way. Mediator protects the safety invariants of both
API’s — namely, (1) atomic reads and writes for the native
traffic, and (2) snapshot isolation or serializability for the
transactional traffic.

Mediator provides weak synchronization between two types
of logical clocks: the global clock maintained by the trans-
action processing service, and the local clocks of multiple
independent database servers. This temporal fencing mech-
anism installs a logical order between native and transac-
tional accesses, despite the fact that the native accesses
completely bypass Mediator’s infrastructure. The protocol
is well-founded, and also extremely lightweight compared to
physical clock synchronization.

Mediator preserves the original performance of native traf-
fic, while incurring minor impact on transactional opera-
tions. A large-scale evaluation shows that this design choice
strikes a favorable tradeoff. Namely, it demonstrates that
performance-wise, Mediator’s approach is superior to auto-
matic transactification of native operations, for a vast ma-
jority of our tested workloads. We also show that spurious
aborts — the price paid for preserving the best of both worlds
— are very infrequent.
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