
Matching Auctions for Search and Native Ads

RUGGIERO CAVALLO, Yahoo Research

MAXIM SVIRIDENKO, Yahoo Research

CHRIS WILKENS∗, Facebook Research

Unit demand auctions power today’s search and native ad marketplaces. Traditional implementations make an

extreme “separability” assumption: the relative value of any two ad slots is the same for all advertisers. Under

this assumption, the optimal assignment problem can be conveniently solved simply by sorting; without it,

efficient allocation requires solving a full-blown weighted matching problem. Motivated by prior work and

our own empirical evidence against separability, we abandon that assumption and tackle the algorithmic

problems of assignment and pricing for general unit demand ad auctions. Instead of computing prices directly,

we take a novel approach and compute bidders’ full allocation curves—complete mappings from each agent’s

bid space to their allocation under the optimal assignment function—from which it is trivial to compute most

prices of interest, like those of the Generalized Second Price (GSP) or Vickrey-Clarke-Groves (VCG) auctions.

Remarkably, we show that these full allocation curves (and therefore prices) can be computed in the same

asymptotic runtime required to compute the optimal matching alone.

1 INTRODUCTION
Consider the following auction setting that is ubiquitous in computational advertising. A set of

bidders I = {1, . . . ,n} is to be matched to a set of slots J = {1, . . . ,m} (where n ≥ m); when bidder

i ∈ I is matched to slot j ∈ J , a desired event (e.g., a click on i’s ad) happens with probability πi , j ,
generating expected value vi , j ≡ viπi , j for the bidder. The auctioneer’s job is to take bids bi , each
purportedly representing i’s value vi , and compute an optimal matching of bidders to slots.

Practitioners often assume the probabilities πi , j have structure that both makes them easier to

learn with scalable Machine Learning methods, and also greatly simplifies the auctioning process.

Specifically, it is assumed that the event-probabilities are separable in the following sense: there

exist α = (α1, . . . ,αm) and β = (β1, . . . , βn) such that ∀i ∈ I , ∀j ∈ J , πi , j = βi ·α j ; i.e., the likelihood
that the event of interest (typically click) occurs when ad i is placed in slot j can be decomposed

into the product of two terms, one depending only on the ad and one depending only on the slot.

In the separable model, the optimal allocation can be found by sorting. If σ (j) is the ad placed

into slot j ∈ {1, . . . ,n},1 the optimal allocation should maximize

∑
j α jβσ (j)bσ (j). Assuming WLOG

that α1 ≥ α2 · · · ≥ αm , the optimum can be computed simply by assigning the ad with highest biβi
to slot 1, the ad with the second-highest biβi to slot 2, and so on — i.e. one simply needs to rank

ads by biβi .
The generalized second price (GSP) auction—so central to slot auctions since their inception in

the previous decade—fits with the separability assumption like a hand in a glove. GSP sorts ads in

∗
Wilkens was employed by Yahoo during the time of research for this paper.

1
To contrive a number of slots equal to the number of ads (n), we can tack on dummy slots with πi , j = 0 as necessary.

Authors’ addresses: Ruggiero Cavallo, Yahoo Research, New York, NY, cavallo@yahoo-inc.com; Maxim Sviridenko, Yahoo

Research, New York, NY, sviri@yahoo-inc.com; Chris Wilkens, Facebook Research, Menlo Park, CA, c.a.wilkens@gmail.com.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM EC’18, June 18–22, 2018, Ithaca, MA, USA. ACM ISBN 978-1-4503-5829-3/18/06. . . $15.00

https://doi.org/10.1145/3219166.3219191

https://doi.org/10.1145/3219166.3219191

decreasing order of biβi , then charges bidder i based on the next ad in the sorted list. If βσ (j) > 0,

the GSP price of ad σ (j) is:

pσ (j) =
bσ (j+1)βσ (j+1)

βσ (j)
Otherwise, pσ (j) = 0. This price corresponds to the lowest bid that gets bidder σ (j) his slot assign-
ment j.

GSP is a workhorse of computational advertising and much research has focused on understand-

ing its properties [7, 21]. Its elegance facilitates implementation and has led to widespread adoption,

but the entire framework is critically based on the separability assumption. That assumption has

always been a stretch ([8] provides good evidence against it in the case of Bing search ad auctions),

and it is becoming a worse approximation as ad formats and pricing types evolve.

Consider Yahoo’s Native Ads marketplace. In this setting, ads are often interspersed within a

very long content stream, such that among the many ads allocated in the auction, a user will only

see one or two at a time. The auction in place is GSP with the following application of separability:

the slot-specific parameter α j captures the probability that the user views slot j (independent of
which ad is shown in it), which decreases with j since scrolling through the content stream is

required to see ads in lower slots. Complicating matters, the “payment event” varies across ads.

Advertisers can choose to pay per-impression (CPM), per-click (CPC), or in some cases even on a

conversion or app-installation basis. Mapping this into the separable framework, the ad-specific

parameter βi equals 1 for any CPM ad, while βi can be taken as the ad-specific “probability of click

conditioned on view” for CPC ads, and similarly for other pricing types.

For CPM ads the separable model collapses to the unobjectionable assumption that whether

or not an ad appears on the page is independent of the ad itself. But injecting CPC ads into the

mix makes the model highly suspect; there is no a priori reason to believe that click probability

conditional on view remains constant as one moves down the page. In fact empirical data strongly

suggests otherwise.

1 2 3 4 5
slot

1.00

1.05

1.10

1.15

1.20

1.25

C
T
R

(s
lo

t
x
)

/
C

T
R

(s
lo

t
1
)

Fig. 1. Empirical click-through-rate (probability of a click conditioned on the ad being viewed) as a function
of slot, aggregated over a dataset of approximately 17M pageviews with randomly selected ad impressions
from Yahoo’s Native Ads marketplace.

As Figure 1 demonstrates, for this Yahoo Native Ads dataset the second slot has a markedly

higher click-through-rate than the first (conditioned on view), and from there on click rates slowly

decline as one goes down the page. Thus, in essence, at a minimum different α vectors are called

for depending on whether the ads are CPM or CPC.
2
If the two ad types are mixed, the separable

model becomes a very poor fit, opening room for a more specialized model to yield efficiency

improvements. A similar, if less stark, story applies in the search advertising context. Certain types

of ads may hold the user’s attention more consistently than others as they are moved up or down

the page; a separable model precludes such effects and fails to optimize accordingly.

1.1 Main questions
These critical issues with the separable model motivate us to consider the following question:

How do we compute efficient ad allocations when click prediction does not satisfy the
separability assumption?

A natural candidate for the ad selection algorithm is to compute a maximum weighted bipartite

matching in the complete bipartite graph G = (I , J ,KI×J) with edge weights vi , j = biπi , j . This
solution maximizes total advertiser value, and can be implemented in a way that meets the severe

constraints on run-time inherent to the online auction domain. In our Yahoo Native Ads setting,

m ≤ 21, n ≈ 100, and the run-time constraint is roughly a few milliseconds. The Maximum

Weighted Bipartite Matching problem is a very well-studied optimization problem with a large set

of algorithms to choose from. Currently, the best approximate algorithms run in almost linear time

[6].
3
Run times usually depend on the number of vertices on each side (n andm in our case), the

number of edges (nm in our case), and the maximum integer weight (for cases where edge weights

are integers). For our purposes the classical Hungarian algorithm extended to handle imbalanced

graphs has run timeO(nm2) [19] and is adequate, with empirical run time under 1ms on production

instances. So far so good. This narrows our focus to the central question of this study, where our

contributions lie:

How do we price ads that have been assigned to slots by the Maximum Weighted Bipartite
Matching algorithm?

A satisfactory pricing scheme will have desirable equilibrium properties and also be computable

under the run-time constraints.

1.2 The VCG (Non) Solution
One attractive answer is to use externality prices as in a Vickrey-Clarke-Groves auction (VCG).

Indeed, this is an elegant and principled solution, not to mention nearly the only solution offered

in the theoretical literature. It has been the go-to implementation for new marketplaces where

separability is inconceivable, and there are many methods to compute VCG prices.

Unfortunately, VCG is not a practical option for marketplaces already built on GSP, which

comprise the majority of those that presently rely on some form of the separability assumption.

VCG prices are quite different from GSP prices, and switching from GSP pricing to VCG pricing—a

quick exercise at Yahoo calculated immediate expected revenue more than 20% lower than GSP in

one of its marketplaces—would create a disruption that is likely unacceptable in terms of revenue

impact, confusion, and general explainability to advertisers. Case in point: engineers at Google

independently discovered VCG pricing mere months after implementing GSP in their Adwords

auction, but it was already deemed too late to switch [22].

2
It may additionally be the case that the shape of click-rate (conditioned on view) functions varies considerably amongst the

CPC ads, in which case one could not effectively apply a separable model even within the subset of ads that are priced CPC.

3
The introduction in [6] also contains a quick survey of known exact algorithms for the problem.

1.3 Allocation Curves
Unable to use VCG, it is natural to shift focus towards generalizing GSP. Unfortunately, what

“generalizing GSP” means is itself an open question that would be impossible to address adequately

in the present work. A variety of methods for generalizing GSP have been tried in the literature

that have vastly different approaches and lead to substantially different prices, e.g. [4, 5, 12, 16, 24].

Fortunately, this discussion can be set aside: instead of basing our implementation on a specific

definition of GSP, we show how to compute full “allocation curves” that capture what an advertiser

would have achieved with an alternate bid, which can accomodate them all.

The allocation curves we want to compute are the same functions that form the foundation of

most single-parameter auction theory. The allocation curve ai : ℜ+ → [0, 1] for bidder i given
bids b−i gives i’s click probability in the allocation that results as a function of his submitted bid bi .
Possessing these curves confers substantial advantages over common auction implementations:

(1) Flexibility and abstraction. Explicitly computing allocation curves decouples allocation and

pricing in the auction system, allowing nearly any desired pricing scheme to be implemented

quickly and making it easy to refine the pricing mechanism later. For example, it is easy

to compute simple GSP “threshold” prices (as we will discuss below) or more complex

generalizations of GSP from [4] that limit the marginal costs associated with higher slots;

it is similarly easy to start with threshold pricing and move to a more complicated method

when the need arises. VCG prices can even be computed using a formula due to [17], as an

area above ai . Note the contrast with traditional externality pricing, which confers little or

no information that would be useful for computing anything other than VCG prices.

(2) Transparency. By capturing counterfactual information at auction time, allocation curves aid

in validation and forecasting. Advertisers often inquire about why their prices have changed

and platforms often need to understand why prices are low/high in a particular auction.

Additionally, advertisers often want to know how things will change if they modify their

bids. In theory it is simple to compute such counterfactuals; unfortunately, real auctions are

constantly evolving and, even from logged information, it is often difficult or impossible to

precisely and consistently reconstruct the auction logic. Computing and logging the allocation

curve explicitly obviates the need for reverse-engineering the auction and substantially

facilitates ex-post analysis.

Since the allocation is deterministic,ai is characterized by them thresholds at which the advertiser

moves up a position. In a separable world, computing these thresholds is again as easy as sorting —

ad i gets the j-th slot (so its event probability is πi , j = βiα j) when it has the jth-highest value of
biβi . Thus, we can read off ai after sorting ads by biβi .

For example, consider the following setting with separable event probabilities and α1 = 1,

α2 = 0.9 and α3 = 0.1:

Bidder bi βi πi ,1 πi ,2 πi ,3
1 $4 0.1 0.1 × 1 = 0.1 0.1 × 0.9 = 0.09 0.1 × 0.1 = 0.01
2 $3 0.2 0.2 × 1 = 0.2 0.2 × 0.9 = 0.18 0.2 × 0.1 = 0.02
3 $2 0.1 0.1 × 1 = 0.1 0.1 × 0.9 = 0.09 0.1 × 0.1 = 0.01

To find the allocation curve for bidder 2, we consider the biβi values b1β1 = 0.4, b2β2 = 0.2b2, and
b3β3 = 0.2. When 0.2b2 ≥ 0.4, bidder 2 will win the top slot, when 0.4 > 0.2b2 ≥ 0.2 it will win the

second slot, and when 0.2 > 0.2b2 it will win the third slot. Thus, the allocation curve for bidder 2

will be as follows:

a2(b2) =


0.2 b2 ≥ 2

0.18 b2 ∈ [1, 2)

0.02 b2 < 1

.

Computing a2 is easy because the thresholds at which the allocation changes (b2 = 1 and b2 = 2)

can be found by inspection once we have b1β1 and b3β3 in sorted order.

However, computing allocation curves is more complicated when event probabilities lack struc-

ture. Each point on an allocation curve represents a counterfactual, and the counterfactual optima

may be quite different from the true optimum. Consider the following example:

Bidder bi πi ,1 πi ,2 πi ,3
1 $4 0.1 0.09 0.01

2 $3 0.1 0.09 0.01

3 $2 0.1 0.02 0.01

The optimal bidder → slot allocation is 1→ 1, 2→ 2, 3→ 3 with a total value of 0.69. optimal

allocation would instead be 1 → 2, 2 → 3, 3 → 1; not only did bidder 2 move down to slot 3

(naturally, since its bid was lowered), the relative order of bidders 1 and 3 changed. In order to

compute allocation curves, we will need to find all the counterfactual optimal matchings that would

result from alternative bids. The allocation curve for bidder 2 in this case will be

a2(b2) =


0.1 b2 ≥ 4

0.09 b2 ∈ [1.75, 4)

0.01 b2 < 1.75

One straightforward algorithm for computing ai repeatedly runs the core allocation algorithm in

a binary search. The thresholds can naïvely be found in time O(nm3
∑

i ∈I log 100bi), assuming that

bids are expressed to the penny. Roughly speaking, this algorithm iteratively picks counterfactual

bids for bidder i , holding all others constant, re-runs the bipartite matching algorithm, and checks

the slot that bidder i receives; this is done repeatedly until the threshold bids are identified. This is

sound but not fast enough in practice.

Our central result in this paper is an algorithm that computes the curves ai substantially faster,

in the same O(nm2) time as the core allocation algorithm. The example above hints at the first

problem we need to solve: for any bidder x and slot y, compute the optimal matching in which x is

assigned to sloty. Given the true optimal allocation, we show that these counterfactuals can be done

quickly by computing short cycles in an appropriate graph. Given these optima, we must identify

the thresholds at which we transition from one optimum to another, which can be formulated as

an upper envelope computation.

1.4 Generalizing GSP
Though what precisely a generalized GSP looks like is out of scope, we will adopt a simple definition

for the sake of exposition. The following folklore definition is broadly applied for less-substantial

generalizations of GSP (e.g., [12, 16]) and theoretically rationalized for general contexts in [24]: if a

bidder i is assigned to slot j , we define the GSP price as the smallest (infimum) bid it can report and

still be assigned into slot j or higher by the ad selection algorithm. Note that when separability

holds, these prices will be the same as in a traditional GSP auction.

Perhaps the most immediately practical result of our work is a fast algorithm for computing these

GSP prices. We present a simplification of our general algorithm for computing ai that computes

GSP prices and runs in timeO(nm2) (Theorem 3.8). In practice, our implementation of the algorithm

leads to overall run time for assignment and pricing together of less than 1ms on the instances we

see in production, which is more than adequate for our goals.

1.5 Multi-dimensional bidding
Moving from the separable model to one in which bidders can have completely idiosyncratic click

probabilities across slots, as discussed above, brings a heavy dose of realism to the stylized models

applied to ad auctions. But in some cases there is reason to go further yet. Even in the model we

proposed above, bidders can still communicate their full valuations across slots in a single number,

since the click (or impression, or conversion, etc.) probabilities are known to the auctioneer. But

what if bidders’ values across slots differ in ways that are known only privately?
Motivated by this concern, we go on to consider a more general setting where advertisers are

allowed to submit separate bids for each slot. That is, we assume that bidder i ∈ I gives us a bid bi , j
for each j ∈ J . In this case, i’s (expressed) expected value for slot j is defined to be vi , j = bi , j · πi , j .
While this is not currently supported by major online ad publishers, we argue that such a system

has the potential to significantly increase overall advertiser value in some marketplaces. Indeed,

advertisers often choose the cost-per-click (CPC) payment model simply due to the ease of tracking

clicks, despite clicks only being a proxy for their real “event of interest”. Most advertisers actually

care about conversions, i.e., various user actions on the advertiser’s website like buying an item,

downloading an app, creating an account, or just spending enough time browsing. Often conversions

are observed privately by the advertiser, and thus are impossible for the auctioneer to accurately

predict. If every click yields an equal probability of conversion, then a single per-click bid remains

perfectly sufficient, but what about otherwise?

We examined the following hypothesis about conversion rates in Yahoo’s Native Ads: users who

choose to scroll down the stream are more engaged with the content and, as a result, on average

clicks in lower positions will yield higher conversions than those above. In Figure 2 we plot the

average rate of conversion conditioned on click for each slot position from 1 to 10 on a subset of

Yahoo Native Ads data where conversions were observable. Indeed, this rate grows significantly

from slot 1 to slot 8 or 9 before leveling off. An analogous and more principled study for Search ads

was performed in [3].

On the other side of the equation, click-rates degrade sharply as one moves down the page, so if

an advertiser is looking for wide exposure it cannot just bid for lower positions in order to reap the

higher value clicks. Additionally, some advertisers (e.g., those publicizing a brand) are more or less

only interested in high position slots due to their higher exposure and general viewability. This

diversity of preferences across the slot positions further supports the idea that an ad marketplace

with slot-specific bidding has its place in the online advertising ecosystem, or is at least worthy of

further study.

Efficient allocation of bidders to slots can, again, be achieved via a maximum weighted bipartite

matching algorithm here; but pricing becomes much more complex. While the generality of VCG

makes it an always-ready candidate pricing mechanism, the notion of GSP-like pricing is not

immediately well-defined in this context. Fortunately, we can expand our notion of allocation

curves to this setting, which will allow us to recover some sensible “in spirit” generalizations of

GSP. The marginal social choice function fi of bidder i given bids b−i is a function fi : ℜ
n
+ → J

that outputs the slot j that i wins as a function of his bid vector bi ∈ ℜ
n
+. We design an algorithm

to compute marginal social choice functions for all bidders with run time O(nm2) (Theorem 4.1),

and discuss various options for GSP-like pricing in Section 4.

While we show that computation of the marginal social choice functions can be done efficiently,

there are many practical challenges to using multiple bids per bidder. First, just carrying around a

vector of many bids instead of one bid per ad creates significant challenges at the web scale. Second,

1 2 3 4 5 6 7 8 9 10
slot

1.0

1.1

1.2

1.3

1.4

C
V

R
(s

lo
t

x
)

/
C

V
R

(s
lo

t
1
)

Fig. 2. Conversion-rate (probability of a conversion conditioned on the ad being clicked) as a function of slot,
aggregated over all ad impressions on a set of pageviews that yielded over 300K clicks in slot 1, descending to
roughly 30K clicks in slot 10.

the “equilibrium features” GSP possesses in the single-dimensional setting (e.g., local truthfulness)

do not readily extend. The question of designing a GSP-like mechanism with provable equilibrium

properties remains open.

2 RELATED LITERATURE
In computational advertising, two main research threads relate to our work: papers that analyze the

separability assumption [3, 8–11] and papers that generalize GSP [1, 4, 5, 12, 16, 24]. Three natural

intuitions underly the work critiquing separability. One intuition is that ads belonging to major

brands benefit less from being placed in a higher slot. This is explored and generally confirmed

in [8, 11]. Another idea is that user behavior follows a cascade model—a user looks at the first item,

then conditionally decides whether to click or continue down the page—leading to substantial

effects between ads that are not captured by an independent (separable) model; [9] estimates

parameters for such a model. A third intuition is that a top slot may attract more accidental or

exploratory clicks, whereas clicks on a less-prominent slot signal a stronger intent. This leads to

non-separability in the conversion rate (likelihood that a click leads to a purchase, sales lead, etc.)

as shown in [3].

A variety of papers use different techniques to generalize GSP, including definitions based

on equilibrium properties [12], heuristic properties of the pricing scheme [16], structure of the

allocation algorithm [5], or truthfulness for alternative models of advertiser preferences [1, 4, 24];

however, a definitive generalization is still an open question. Since the prices we compute as “GSP

prices” can be derived as the truthful solution for preferences alternative to quasilinear utilities, our

work is also related to the corresponding literature on stable matchings in the assignment model

when preferences are not quasilinear. [1] builds on the Hungarian Method to design a generalized

auction framework that computes a stable matching for a broad class of preferences that can

include our model of GSP prices and runs in O(nm3) time. While stability is related to truthfulness,

the concepts diverge in general models, so the outcome chosen by [1] would not generally be a

maximum weighted matching and the outcome/prices from our auction would not generally be a

stable matching. For information on stable matchings with non-quasilinear utilities, see the related

work section of [1]. For an overview of the breadth of work on matching markets, see [20].

Outside advertising, our work has ties to competitive equilibria and the assignment model in

matching markets. In the language of bidders and slots, letting vi , j be expected value to i for
winning slot j, a competitive equilibrium for quasilinear bidders is a matching with slot prices

pj such that each bidder is matched to a slot that maximizes vi , j − pj . The minimum competitive

equilibrium is always well-defined and always corresponds to VCG (a maximumweighted matching

with VCG prices) [13]. Moreover, the VCG prices are the dual values associated with an optimal

matching in a standard LP formulation of the assignment problem [2]. As a result, they naturally

occur implicitly or explicitly in algorithms and mechanisms that have a primal-dual structure, such

as the Hungarian Method and related ascending price auctions [13]. Additionally, some of our

techniques are closely related to the more general literature on competitive equilibria with gross

substitutes. The augmentation graph we use as a starting point for our algorithm is effectively

equivalent to the exchange graph of [14], which is used as a method of computing equilibrium

prices (see also [18]). We leverage the structure of this graph to identify configurations that are

optimal with one fixed assignment, allowing us to recover the allocation curve.

3 CLASSICAL CASE: ONE BID PER BIDDER
Our main result is an algorithm that computes bidders’ full allocation curves in time O(nm2), the

same time required to compute a maximum weighted matching using the Hungarian Method.

We first recall our model. We have n bidders I = {1, . . . ,n} who are to be matched to m
slots J = {1, . . . ,m}. Each bidder i ∈ I reports a bid bi and has an event probability πi , j for
each j ∈ J . For convenience, we add dummy slots {m + 1, . . . ,n} with πi , j = 0 and call the

result J ′ = {1, . . . ,m,m + 1, . . . ,n}. For a matching σ : J ′ → I , we write the total value as

V σ =
∑

j biπσ (j), j . Given bids, the auction computes a maximumweightedmatching σ ∗ (maximizing

V σ
) and we assume WLOG that bidders are labeled so that bidder i is matched to slot i under this

matching (σ ∗(j) = j). Let xi (b) denote the event probability for bidder i as a function of all the bids.

For a fixed bidder i and bids b−i , we say that i’s allocation curve is the function ai (bi) = xi (bi ,b−i).
Since the allocation curve is a step function with at mostm + 1 steps we represent it as list of

bid-value pairs, one for each step.

Algorithm 1 describes our main algorithm and Algorithm 2 an optimized implementation. Both

algorithms implement the same logic; the second achieves better asymptotic run-time by exploiting

structure. First, we apply the Hungarian Method to compute a maximal matching. From this

matching, we construct a weighted graph in which the shortest cycle through edge j → i identifies
the best matching that assigns bidder i to slot j. Computing all-pairs shortest paths identifies all

such cycles, from which we are able to infer the allocaiton curve for each bidder. Algorithm 1

treats dummy nodes as real slots and uses a naive implementation of the Hungarian Method for

matching and the Floyd-Warshall algorithm for all-pairs shortest paths. Algorithm 2 is aware that

some nodes are just dummy nodes. It uses an optimized version of the Hungarian Method and a

modified version of Floyd-Warshall that exploits structure in the paths we need to compute.

Our central theorem is that these algorithms quickly compute a maximal matching as well as all

n allocation curves:

Theorem 3.1. Algorithms 1 and 2 compute a maximal matching σ ∗ and one allocation curve ai (bi)
for each bidder. Algorithm 1 runs in time O(n3) and Algorithm 2 runs in time O(nm2).

Our analysis begins with a series of claims and lemmas about matchings and paths that apply

equally to Algorithms 1 and 2. The proof of Theorem 3.1 connects these claims to the algorithms. The

following graph is effectively equivalent to the exchange graph of [14]. The subsequent observations

ALGORITHM 1: O(n3) Algorithm for Maximum Weighted Matching with Allocation Curves

Input: Bids bi and event probabilities πi , j
Output: Maximum weighted matching σ ∗; allocation curves ai (bi).

1 Run the Hungarian Method to compute a maximum matching σ ∗ : J ′ → I .

Relabel bidders so that σ ∗(i) = i and let V ∗ =
∑
j bjπj , j denote the matching’s value.

2 Let G be a complete directed graph on vertices J ′ = [n] with edge weightswi , j = bjπj , j − bjπj ,i .

Run Floyd-Warshall to compute all-pairs shortest path distances di , j in G.

3 for i ∈ I do
for j ∈ J ′ do

Define a linear function li , j (z) = πi , jz + (V
∗ − πi ,ibi − di , j).

end
Compute the upper-envelope of the lines li , j (z) as a sequence of segments. Call it Ai (z).

Compute ai (z) =
dAi
dz (i.e., one slope per segment, with the starting point of the segment). This is

bidder i’s allocation curve.

end

are slightly stronger than their natural parallels in the gross substitutes literature owing to the

unit-demand preferences in our setting [14, 15, 18]:

Definition 3.2 (Augmentation Graph). The augmentation graph Gσ
is a directed graph on |J ′ | = n

nodes with edge weights wσ
i , j = vσ (j), j − vσ (j),i . When σ is not specified we assume σ = σ ∗ (the

optimal matching chosen by the graph), sowi , j = w
σ ∗
i , j = vσ ∗(j), j − vσ ∗(j),i = vj , j − vj ,i (bidders are

labeled so that σ ∗(j) = j).

Observation 1. The negative weight (−wσ
i , j) is the amount the objective value would change if

bidder σ (j) were matched to slot i instead of slot j.

Definition 3.3 (Augmenting Subgraph). For two matchings σ and σ ′, the augmenting subgraph
Hσ→σ ′
v is a subgraph of Gσ

v . This graph has a directed edge (i , j) if for some t ∈ I the edge (t , i)
belongs to matching σ ′ and the edge (t , j) belongs to matching σ .

Observation 2. Suppose we are given two matchings σ and σ ′ of valueV σ andV σ ′ in the original
bipartite graph. The total negative weight of edges in Hσ→σ ′

v is equal to the change in objective value
from σ to σ ′, i.e.,

V σ ′ = V σ −
∑

(i , j)∈Hσ→σ ′
v

wσ
i , j .

Claim 1. For any σ and σ ′, the connected components ofHσ→σ ′
v are directed cycles and disconnected

vertices; any subgraph H ofGσ
v consisting only of directed cycles and disconnected vertices corresponds

to a matching σ ′.

Proof. First, we show that Hσ→σ ′
v is as described. If bidder i is matched to the same slot in σ

and σ ′, i has degree 0 in Hσ→σ ′
v and is a disconnected vertex. For all remaining nodes, each node

has exactly one incoming edge from the slot that bidder i gets and exactly one outgoing edge to the

bidder that gets slot i . A connected component whose nodes have in-degree=outdegree=1 is a cycle.

Second, we show how to construct σ ′ from a given H : if j is a disconnected vertex, leave bidder j
matched to slot j; otherwise, let (i , j) denote the incoming edge to j in H and match bidder j to slot

i . □

ALGORITHM 2: O(nm2) Algorithm for Maximum Weighted Matching with Allocation Curves

Input: Bids bi and event probabilities πi , j
Output: Maximum weighted matching σ ∗; allocation curves ai (bi).

1 Run the Hungarian Method to compute a maximum matching σ ∗ : J → I . Assign unmatched bidders to

slots {m + 1, . . . ,n} arbitrarily to get a matching σ ∗ : J ′ → I . Relabel bidders so that σ ∗(i) = i and let

V ∗ =
∑
j bjπj , j denote the matching’s value.

2 Let G be a complete directed graph on vertices J ′ = [n] with edge weightswi , j = bjπj , j − bjπj ,i (do not

store G explicitly). Compute shortest paths di , j that contain at most one node in {m + 1, . . . ,n} as

follows:

/* Standard Floyd-Warshall initialization over the i , j pairs we will need. */

for i ∈ I , j ∈ J do

dj ,i ←

{
0 i = j

wi , j otherwise .

end
/* Standard Floyd-Warshall update step using only intermediate nodes in [m]. After

this step, each di , j will contain the shortest path distance from i to j along paths

whose intermediate nodes are all in [m]. */

for k ∈ {1, . . . ,m}, i ∈ I , j ∈ J ∪ {m + 1} do
di , j ← min(di , j ,di ,k + dk , j)

end
/* When i , j ∈ [m] we do extra Floyd-Warshall style update steps to consider paths from

i to j that contain exactly one node k from {m + 1, . . . ,n}. */

for k ∈ {m + 1, . . . ,n}, i ∈ {1, . . . ,m}, j ∈ J do
di , j ← min(di , j ,di ,k + dk , j)

end

3 for i ∈ I do
for j ∈ J ∪ {m + 1} do

Define li , j (z) = πi , jz + (V
∗ − πi ,ibi − di , j).

end
Compute the upper-envelope of the lines li , j (z) as a sequence of segments. Call it Ai (z).

Compute ai (z) =
dAi
dz (i.e., one slope per segment, with the starting point of the segment). This is

bidder i’s allocation curve.

end

Observation 3. A negative weight cycle in Gσ
v corresponds to an augmenting path in the original

bipartite graph that can be used to generate a matching with a higher value.

Observation 4. Gσ
v has a negative weight cycle if and only if it is not optimal.

Claim 2. Let σ ∗ be an optimal matching for vi , j and fix a bidder x and slot y. There exists σ+ such
that:

(1) the matching σ+ is optimal among matchings that assign slot y to bidder x ,
(2) the augmentation graph Hσ ∗→σ +

v contains exactly one cycle C if x is not matched to y in σ ∗ (C
must contain the edge (y, x)) and contains no edges otherwise, and

(3) IfC exists then |C ∩{m+1, . . . ,n}| ≤ 1, that is, at most one vertex inC corresponds to a dummy
slot.

Proof. If x is matched to y in σ ∗ we can trivially take σ+ = σ ∗, whose augmentation graph has

no edges. Thus, assume x is not matched to y in σ ∗.
We first show that an appropriate σ+ exists that contains only one cycle C . For any constrained-

optimal matching σ ′ we can write

V σ ′ = V −
∑

(i , j)∈Hσ ∗→σ ′
v

wi , j .

Suppose that Hσ ∗→σ ′
v contains cycles C0,C1, . . . ,Ck where C0 includes the edge (y, x). Let C =⋃k

l=1Cl (i.e., all edges inH except the cycleC0). We abuse notation and write σ ′−C as the matching

implied by the augmentation graph Hσ ∗→σ ′
v with edges from C removed. We can write

V σ ′ = V σ ∗ −
∑

(i , j)∈Hσ ∗→σ ′
v \C

wi , j −
∑
(i , j)∈C

wi , j

= V σ ′−C −
∑
(i , j)∈C

wi , j .

If

∑
(i , j)∈C wi , j > 0, then V σ ′−C > V σ ′

. However, σ ′ − C still matches x to y, contradicting opti-

mality of σ ′. On the other hand, if

∑
(i , j)∈C wi , j < 0 then we have a negative-weight-cycle in Gv ,

contradicting optimality of σ ∗. Thus, ∑
(i , j)∈C

wi , j = 0

for any cycle C that does not contain the edge (y, x), and

V σ ′ = V σ ∗ −
∑

(i , j)∈Hσ ∗→σ ′
v

wi , j

= V −
∑

(i , j)∈Hσ ∗→σ ′
v \C

wi , j = V
σ ′−C ,

implying σ ′ −C is also constrained-optimal, so we take σ+ = σ ′ −C .
Finally, we show that we can choose C so that it contains at most one dummy slot. Suppose we

are given a constrained-optimal σ ′ with a single cycle

C = {x , . . . ,w0, z1,w1, . . . , z2,w2, . . . ,y}

where x , . . . ,w0 ∈ [m] andw2, . . . ,y ∈ [m] (possibly x = w0 and/or y = w2) but z1, z2 < [m]. Split
C into two cycles as follows:

C0 = {x , . . . ,w0, z1,w2, . . . ,y} and C1 = {w1, . . . , z2}

and call the resulting matching σ ′′. We have

V σ ′′ = V σ ′ + vw2 ,z1 − vw2 ,z2 + vw1 ,z1 − vw1 ,z2 .

However, since z1 and z2 are both dummy slots we have vw2 ,z1 = vw2 ,z2 = vw1 ,z1 = vw1 ,z2 = 0 and

soV σ ′′ = V σ ′
. Now, our earlier argument says that only the cycleC0 is required to construct σ+, so

we take σ+ = σ ′′ −C1. Remark thatC0 contains only one node not in [m] (specifically z1) as desired.
This construction for splitting C works as long as x ,y ∈ [m]. When x < [m], take the cycles

C0 = {x ,w2, . . . ,y} and C1 = {w1, . . . , z2} instead. □

Lemma 3.4. Fix b, a bidder indexed by x and a slot indexed by y , x . Let σ ∗ be an optimal matching
(note that due to our relabelling σ (x) = x) and let σ ′ be any matching that is optimal subject to the
constraint that bidder x is matched to slot y. Then,

V σ + = V σ ∗ −wy ,x − dx ,y

where dx ,y is the shortest path distance from x to y in Gσ ∗
v . Moreover, there is a path from x to y of

length dx ,y containing at most one vertex not in [m].

Proof. Notice that all constrained-optimal matchings will have the same value. By the preceding

claim, there exists a constrained-optimal matching σ+ that has an augmenting subgraph Hσ ∗→σ ′
v

consisting of a single cycle C0 (and disconnected nodes), where C0 contains edge (y, x). We can

write

V σ + = V σ ∗ −
∑
(i , j)∈C0

wi , j .

Moreover, any cycle C including the edge (y, x) will define a matching σ ′ that assigns x to y, so
we can conclude from optimality of σ+ that C0 minimizes

∑
(i , j)∈C0

wi , j over all cycles containing

(y, x). (Note that Gσ ∗
v cannot have negative-weight cycles because σ ∗ is optimal.)

Finally, given that C0 minimizes

∑
(i , j)∈C0

wi , j over all cycles containing (y, x), we know that∑
(i , j)∈C0

wσ ∗
i , j = wy ,x + dx ,y

where dσ
∗

x ,y is the shortest path from x to y. Since we know that we can always choose C0 so that it

contains at most one vertex not in [m], it follows that there is a shortest path containing at most

one vertex not in [m] and the lemma immediately follows. □

Next, we introduce the notion of configuration lines, which have been put to use in prior work

[4].

Definition 3.5. The configuration line for bidder i in matching σ is a function of bi given by

li ,σ (bi) = πi ,σ (−1)(i) · bi + V σ
−i , where σ (−1)(i) is the slot to which i is matched in σ and V σ

−i =∑
j,i πj ,σ (−1)(j)bj .

Claim 3. Bidder i’s allocation curve can be defined as the derivative of the upper envelope of the
configuration lines for all σ .

Proof. Indeed, the upper envelope of configuration lines defines the value of the optimal

matching as a function of bidders i bid bi . For each bi the maximum is achieved on some matching

σ and corresponding line li ,σ (bi) = πi ,σ (−1)(i) · bi +V
σ
−i is a linear function of bi . The derivative at

point bi has value πi ,σ (−1)(i) which is “event probability” if we allocate bidder i to the spot σ (−1)(i),
which matches the definition of the allocation curve. □

We can now leverage the structure of the matching problem to restrict the set of lines we need

to consider when computing the upper envelope or its derivative:

Lemma 3.6. Fix bidder x . For each slot y define the line lx ,y (z) = πx ,y · z + (V
∗ − πx ,xbx − dx ,y).

The derivative of the upper envelope of these lines is bidder x ’s allocation curve.
Moreover, when m < n, it is sufficient to compute the upper envelope of the lines lx ,y where

y ∈ {1, . . . ,m,m + 1}.

Proof. All configuration lines lx ,σ where x = σ (y) will have the same slope. Thus, when

computing the upper envelope, of all σ that match x to y, only the ones that maximize V σ
−x will be

relevant. Consequently, it suffices, for each y, to find one line with maximal value of V σ
−x .

Fixing slot y, maximizing V σ
−x is equivalent to finding the constrained-optimal matching σ ′ that

matches bidder x to slot y. As shown earlier, this matching has value V σ ′ = V σ ∗ −wy ,x − dx ,y and

thus

V σ ′
−x = V

σ ∗ −wy ,x − dx ,y − πx ,ybx

= V σ ∗ − (πx ,xbx − πx ,ybx) − dx ,y − πx ,ybx

= V σ ∗ − dx ,y − πx ,xbx ,

from which the first part of the lemma follows.

Finally, remark that dummy slots are interchangeable, so πx ,y and dx ,y will be the same for all

y ∈ {m + 1, . . . ,n}. Thus, the lines lx ,y will be the same and it is sufficient to take only one when

computing the upper envelope (we take y =m + 1). □

Proof of Theorem 3.1. For Algorithm 1, correctness follows because the algorithm directly computes

allocation as per Lemma 3.6. Steps (1) and (2) take O(n3) time due to the classical run time bounds

on the Hungarian and Floyd-Warshall algorithms. Once we have computed V ∗ and the table with

all pair shortest paths, it takes O(n2) to run step (3), for an overall runtime of O(n3).
Algorithm 2 is an optimization of Algorithm 1. The Hungarian Method is easily modified to run

in time O(nm2) [19]. Step (2) is simply an optimization of the Floyd-Warshall algorithm that takes

into account two facts: (1) we only care about paths from x ∈ I to y ∈ J ∪ {m + 1} (dummy nodes

are equivalent) and (2) we only care about paths that contain at most one node in {m + 1, . . . ,n} as
per Lemma 3.4. The first loop in step (2) initializes the nm distances we care about, the second loop

computes the shortest paths where all intermediate nodes are in {1, . . . ,m} in the same pattern as

the original Floyd-Warshall algorithm, and the third loop considers paths where both endpoints are

in {1, . . . ,m} and exactly one intermediate node is in {m + 1, . . . ,n}. The second and third loops

run inO(nm2) time. Finally, step (3) is optimized to only use lines for J ∪ {m + 1} as per Lemma 3.6

and requires O(nm) time, for a total asymptotic runtime of O(nm2). □

3.1 GSP pricing
Our GSP prices are an important special case that can be computed with a slightly simpler algorithm

(Algorithm 3). We use the following definition of GSP prices:

Definition 3.7 (“GSP” Price). The GSP price for bidder i is defined as the minimum (infimum) bid

that i can submit that will maintain the slot he received.

pGSPi = inf{z | xi (b−i , z) ≥ xi (b)}

This definition has long existed in the folklore and is commonly applied in practice. More recently,

[24] justified them theoretically as being truthful for a “value maximizing” bidder who tries to

maximize xi while keeping pi ≤ bi (any outcome with pi ≤ vi is preferred to any outcome with

pi > vi). The following claim is a direct application of the characterization from [24]:

Claim 4. The “GSP” price is truthful for value maximizers (almost everywhere4).

If we ran Algorithm 1 we could easily compute GSP prices from the allocation curves ai , but if
we know we only want GSP prices we can leverage the same ideas in a simpler algorithm, shown

in Algorithm 3 and proven below.

4
Truth-telling is a best-response as long as there wouldn’t be a tie under truthful bidding, which happens almost everywhere

in a continuous bid space (see [24]).

Theorem 3.8. Letting di , j be the shortest path from i to j in the augmentation graph for the optimal
matching σ ∗, the “GSP” price for bidder i is equal to

pGSPi = max

j |πi , j<πi ,i

−di , j

πi ,i − πi , j

if there is at least one index j such that πi , j < πi ,i , or equals 0 otherwise.
Algorithm 3 computes a maximal matching σ ∗ and GSP prices pGSPi . It can be implemented in time

O(nm2) using the same tricks as Algorithm 2.

Proof. We want to find the smallest bi ≥ 0 such that the augmentation graph for σ ∗ does not
have a negative-weight cycle, since this is the smallest bi for which σ ∗ is optimal.

When we change bi , only the weights on edges incoming to node i change, i.e., onlyw j ,i change.

If any negative cycle exists, there exists a simple negative cycle that passes through node i at most

once and therefore only includes one edge with a modified weight. It thus suffices to consider the

edges (i , j) individually to see if they are part of a negative-weight cycle.

An edge (i , j) will be part of a negative-weight cycle if di , j +w j ,i < 0 where di , j is the shortest
path from i to j in the augmentation graph. Thus, to ensure no negative weight cycles we need

di , j ≥ −w j ,i = −(vi ,i − vi , j) = −bi (πi ,i − πi , j) .

When πi ,i = πi , j this is irrelevant. When πi ,i > πi , j this is equivalent to

bi ≥
−di , j

πi ,i − πi , j
,

and when πi , j > πi ,i this is equivalent to

bi ≤
−di , j

πi ,i − πi , j
.

Since we want a lower-bound, we take the maximum over the lower-bounds to get the characteri-

zation of pGSPi in the theorem.

The run time analysis for the Hungarian Method and Floyd-Warshall is the same as for computing

allocation curves and the same tricks from Algorithm 2 can be applied to achieve O(nm2) run time

(see the proof of Theorem 3.1). Computing the n prices pGSPi requires O(nm) time.

□

ALGORITHM 3: Algorithm for Computing Maximum Weighted Matching with GSP Prices

Input: Bids bi and Event Probabilities πi , j
Output: Allocation Curves ai (bi) as

1 Run the Hungarian Method to compute a maximum matching σ ∗ : J → I .

Relabel bidders so that σ ∗(i) = i and let V ∗ =
∑
j bjπj , j denote the matching’s value.

2 Let G be a complete directed graph on vertices J ′ = [n] with edge weightswi , j = bjπj , j − bjπj ,i .

Run Floyd-Warshall to compute all-pairs shortest path distances di , j in G.

3 for i ∈ I do
pGSPi = maxj |πi , j<πi ,i

−di , j
πi ,i−πi , j

end

4 GENERAL CASE: SEPARATE BIDS FOR EACH SLOT
While using a single bid is convenient, there is often reason to believe that bidders’ values for an

event may be substantially different for different slots, as discussed earlier. Allowing each bidder

i ∈ I to report a separate bid bi , j for each slot j ∈ J allows them to express this. In this section we

seek algorithms for this general setting that are parallel to our single bid algorithms.

We first recall our model for the general case. We have n bidders I = {1, . . . ,n} who are to

be matched to m slots J = {1, . . . ,m}. Each bidder i ∈ I reports a bid bi , j for each slot j ∈ J
and has an event probability πi , j for each j ∈ J . For a matching σ : J → I , we write the total
value as V σ =

∑
j bi , jπσ (j), j . Given bids, the auction computes a maximum weighted matching σ ∗

(maximizing V σ
) and, WLOG, we assume that bidders are labeled so that σ ∗(j) = j.

The allocation curve ai cannot be cleanly defined in a multi-parameter bid space. Instead,

we define the marginal social choice function for a fixed bidder i and bids b−i as the function

fi : ℜ
m
+ → J ∪ {m + 1} yielding the slot bidder i gets when it reports bids bi , j , j ∈ J . The dummy

slotm + 1 corresponds to the event when a bidder does not get any slots in J . The marginal social

choice function can be understood as a partition ofℜn
+ (the bid space of bidder i) intom+ 1 regions,

one for each slot in J ∪ {m + 1}. Let Bi , j ⊆ ℜ
n
+ denote the set of bid vectors bi ∈ ℜ

n
+ that would

cause bidder i to get slot j (given the bids of others b−i).
In multi-parameter settings, another useful piece of information for counterfactual analysis is

the full menu of VCG prices. That is, for each slot j ∈ J ∪ {m + 1}, what would the VCG price have

been if bidder i had submitted bids bi , j such that fi (bi) = j? For reasons that we will see, the VCG
price is relevant even when mechanisms do not aim to use VCG pricing.

Algorithm 4 computes a concise representation of the marginal social choice functions fi , as well
as the full menus of VCG prices. This all assumes that behavior in the case of ties is straightforward

and/or irrelevant (e.g., if ties are broken by solving an NP-hard problem, we haven’t completely

recovered fi). The proof of the following theorem can be found in the online version of the paper:

Theorem 4.1. Algorithm 4 computes an optimal matching σ ∗ along with the n marginal social
choice functions. It can be implemented in time O(nm2). The space required to store these functions is
O(nm).

4.1 GSP prices
While we presented a fast algorithm to compute marginal social choice functions, the question of

GSP-like pricing still stands. A natural starting point is to ask: given the optimal weighted bipartite

matching where bidder σ ∗(j) is assigned to slot j , what would be the smallest bid that allows bidder

σ ∗(j) to keep his slot in the optimal assignment? When bids are multi-parameter, even this intuition

is not fully specific and lends itself to two possibilities (recall bidders are labeled such that σ ∗(j) = j):
(1) what is the smallest bid if i strategizes over all bids bi , j , j ∈ J , or (2) what is the smallest bid bi ,i
if bi , j , j , i are naively held fixed? Call the former Weak Generalized Second Price (WGSP) and the

latter Aggressive Generalized Second Price (AGSP).
Unfortunately, while both WGSP and AGSP prices will be easy to compute, neither will be

immediately satisfactory as a generalization of GSP, as we will discuss below. The notion that

GSP prices are truthful for value maximizers offers a lens to understand why—if we insist on

computing a maximum weighted matching—there will be no prices that make the auction truthful

for value maximizers, suggesting that any method of generalizing GSP will sacrifice some of the

elegance of a simple GSP auction. Recovering all the properties we desire may require picking a

different optimization algorithm, e.g., a greedy algorithm would admit truthful prices for value

maximizers [23] (inducing the stable matching computed by [1]).

ALGORITHM 4: Algorithm for Computing Maximum Weighted Matching with Marginal Social Choice

Functions

Input: Bids bi ∈ ℜn
+ and event probabilities πi , j

Output: Maximum weighted matching σ ∗ and marginal social choice functions fi (bi) as

1 Run the Hungarian Method to compute a maximum matching σ ∗ : J → I .

Relabel bidders so that σ ∗(i) = i and let V ∗ =
∑
j bj , jπj , j denote the matching’s value.

2 Let G be a complete directed graph on vertices J ′ = [n] with edge weightswi , j = bj , jπj , j − bi , jπj ,i .

Run Floyd-Warshall to compute all-pairs shortest path distances di , j in G. Define V
−j
−i = V

∗ − vi ,i − di , j .

3 for i ∈ I do
Compute fi (0) = argmaxj V

−j
−i breaking ties arbitrarily.

end

4 for i ∈ I do
for j ∈ J ∪ {m + 1} do

Define pVCGi , j · πi , j = V
−fi (0)
−i −V

−j
−i = di , j − di ,fi (0).

end
The marginal social choice function for i is fi (bi) = argmaxj ∈J∪{m+1}

{
bi , j · πi , j − di , j

}
.

end

WGSP. WGSP is the natural generalization of the minimum bid property we used in the single-

parameter regime. Unfortunately, it turns out to be degenerate — the WGSP price is simply the

VCG price:

Theorem 4.2. pWGSP
i = pVCGi

Proof. First, observe that since the auction will maximize the sum of values, reporting bi ,r = 0

for r , j can only reduce the minimum report bj required for bidder i to be matched to slot j . Thus,
WLOG we can fix bi ,r = 0 for r , j and find the minimum (infimum) bi , j such that i gets matched

to slot j.
Recall our notation V −j

−i for the maximum total value attainable by bidders other than i when
they are allocated to slots other than j (i.e., the maximum total value attainable by bidders other

than i if we fix i to be matched to slot j). In this notation, we observe that VCG externality prices

can be written as pVCGi , j πi , j = V
−fi (0)
−i −V −j

−i where fi is the marginal social choice function of bidder

i given v−i .
Suppose that the mechanism assigns i to a slot k , j. We know that the mechanism will get

zero value from i and therefore will pick the outcome that maximizes value from bidders −i ,

thus achieving an objective value of V
fi (0)
−i . On the other hand, when i wins slot j the objective

value will be V −j
−i + bi , jπi , j . Thus, bidder i will be assigned to slot j if V −j

−i + bi , jπi , j > V
fi (0)
−i ,

and if V −j
−i + bi , jπi , j < V

fi (0)
−i then it will not be assigned to slot j. We can thus conclude that

V −j
−i + p

WGSP
i , j πi , j = V

fi (0)
−i and it follows that

pWGSP
i , j πi , j = V

−fi (0)
−i −V −j

−i = p
VCG
i , j πi , j .

A detailed proof can be found in the online version of the paper. □

AGSP. The following theorem says that AGSP prices are easy to compute in the same manner as

the GSP prices. They will generally be higher than VCG prices, which is good in that it differentiates

them from VCG (unlike WGSP) but bad in that an advertiser can reduce its price simply by reducing

its bid on other outcomes.

Theorem 4.3. pAGSPi = max{0,maxj
bi , jπi , j−di , j

πii
}

Proof. We want to find the smallest bii ≥ 0 such that the augmentation graph for σ ∗ does
not have a negative weight cycle. Analogously to Lemma 3.7 we need to ensure that di , j ≥
−bi ,iπii + bi , jπi , j . Therefore,

bi ,i ≥
bi , jπi , j − di , j

πii
.

□
5 CONCLUSION
This paper studies ad auctions when parameters may be slot-specific. The algorithms herein are

simultaneously eminently practical and theoretically intriguing. From a practical perspective, our

algorithms are all fast enough to be implemented under the severe run time constraints of the

online advertising domain, while offering significantly more optimization power than the status

quo separable model. From a theoretical perspective, our work takes a novel approach and explicitly

computes bidders’ allocation functions. While this may initially seem counterintuitive and excessive,

it introduces a layer of abstraction between allocation and pricing that confers substantial power

to the auctioneer and permits implementations that would otherwise be effectively impossible [4].

This new approach inspires a variety of questions for future work — e.g., what are other settings

where allocation functions can be computed efficiently and/or practically, and what are the benefits?

Is computing allocation functions provably harder than computing truthful prices in interesting

settings, or provably equivalent? Given that the allocation curve is ubiquitous in proofs, the fact

that the existing literature never computes it directly suggests that our approach is ripe for further

study.

REFERENCES
[1] Gagan Aggarwal, S. Muthukrishnan, Dávid Pál, and Martin Pál. 2009. General Auction Mechanism for Search

Advertising. In Proceedings of the 18th International Conference on World Wide Web (WWW ’09). ACM, New York, NY,

USA, 241–250. DOI:http://dx.doi.org/10.1145/1526709.1526742
[2] Sushil Bikhchandani and Joseph M. Ostroy. 2006. Combinatorial Auctions. MIT Press, Chapter From the assignment

model to combinatorial auctions.

[3] Liad Blumrosen, Jason D. Hartline, and Shuzhen Nong. 2008. Position Auctions and Non-uniform Conversion Rates. In

ACM EC Workshop on Advertisement Auctions.
[4] Ruggiero Cavallo, Prabhakar Krishnamurthy, Maxim Sviridenko, and Christopher A. Wilkens. 2017. Sponsored

Search Auctions with Rich Ads. In Proceedings of the 26th International Conference on World Wide Web (WWW ’17).
International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, Switzerland, 43–51.

DOI:http://dx.doi.org/10.1145/3038912.3052703
[5] Ruggiero Cavallo and Christopher A. Wilkens. 2014. Web and Internet Economics: 10th International Conference, WINE

2014, Beijing, China, December 14-17, 2014. Proceedings. Springer International Publishing, Cham, Chapter GSP with

General Independent Click-through-Rates, 400–416. DOI:http://dx.doi.org/10.1007/978-3-319-13129-0_32
[6] Ran Duan and Seth Pettie. 2014. Linear-Time Approximation for Maximum Weight Matching. J. ACM 61, 1, Article 1

(Jan. 2014), 23 pages. DOI:http://dx.doi.org/10.1145/2529989
[7] Benjamin Edelman, Michael Ostrovsky, and Michael Schwarz. 2007. Internet Advertising and the Generalized Second-

Price Auction: Selling Billions of Dollars Worth of Keywords. American Economic Review 97, 1 (2007), 242–259.

[8] Matt Goldman and JustinM. Rao. 2017. PositionAuctions in Practice. (2017). DOI:http://dx.doi.org/10.2139/ssrn.2524688
[9] Renato Gomes, Nicole Immorlica, and Evangelos Markakis. 2009. Externalities in Keyword Auctions: An Empirical

and Theoretical Assessment. In Internet and Network Economics, Stefano Leonardi (Ed.). Springer Berlin Heidelberg,

Berlin, Heidelberg, 172–183.

[10] Przemyslaw Jeziorski and Sridhar Moorthy. 2017. Advertiser Prominence Effects in Search Advertising. Management
Science 0, 0 (2017), null. DOI:http://dx.doi.org/10.1287/mnsc.2016.2677 arXiv:https://doi.org/10.1287/mnsc.2016.2677

http://dx.doi.org/10.1145/1526709.1526742
http://dx.doi.org/10.1145/3038912.3052703
http://dx.doi.org/10.1007/978-3-319-13129-0_32
http://dx.doi.org/10.1145/2529989
http://dx.doi.org/10.2139/ssrn.2524688
http://dx.doi.org/10.1287/mnsc.2016.2677
http://arxiv.org/abs/https://doi.org/10.1287/mnsc.2016.2677

[11] Przemyslaw Jeziorski and Ilya Segal. 2015. What Makes Them Click: Empirical Analysis of Consumer Demand for

Search Advertising. American Economic Journal: Microeconomics 7, 3 (August 2015), 24–53. DOI:http://dx.doi.org/10.
1257/mic.20100119

[12] Sébastien Lahaie and David M. Pennock. 2007. Revenue Analysis of a Family of Ranking Rules for Keyword Auctions.

In Proceedings of the 8th ACM Conference on Electronic Commerce (EC ’07). ACM, New York, NY, USA, 50–56. DOI:
http://dx.doi.org/10.1145/1250910.1250918

[13] Herman B. Leonard. 1983. Elicitation of honest preferences for the assignment of individuals to positions. The Journal
of Political Economy 91, 3 (1983), 461–479.

[14] Kazuo Murota. 1996. Valuated Matroid Intersection I: Optimality Criteria. SIAM J. Discrete Math. 9 (1996), 545–561.
[15] Kazuo Murota. 1996. Valuated Matroid Intersection II: Algorithms. SIAM J. Discret. Math. 9, 4 (Nov. 1996), 562–576.

DOI:http://dx.doi.org/10.1137/S0895480195280009
[16] S. Muthukrishnan. 2009. Bidding on Configurations in Internet Ad Auctions. In Computing and Combinatorics, Hung Q.

Ngo (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 1–6.

[17] Roger B. Myerson. 1981. Optimal Auction Design. Math. Oper. Res. 6, 1 (Feb. 1981), 58–73. DOI:http://dx.doi.org/10.
1287/moor.6.1.58

[18] Renato Paes Leme. 2017. Gross substitutability: An algorithmic survey. Games and Economic Behavior 106, C (2017),

294–316. https://EconPapers.repec.org/RePEc:eee:gamebe:v:106:y:2017:i:c:p:294-316

[19] Lyle Ramshaw and Robert E. Tarjan. 2012. On Minimum-Cost Assignments in Unbalanced Bipartite Graphs. (2012).

[20] Uriel G. Rothblum. 1992. Two-sided matching: A study in game-theoretic modeling and analysis: By Alvin E. Roth and

Marilda A. Oliveira Sotomayor, Econometric Society Monographs, Cambridge Univ. Press, Cambridge, MA, 1990. 265 +

xiii pp. Games and Economic Behavior 4, 1 (1992), 161–165. https://EconPapers.repec.org/RePEc:eee:gamebe:v:4:y:1992:

i:1:p:161-165

[21] Hal R. Varian. 2007. Position auctions. International Journal of Industrial Organization 25 (2007), 1163–1178.

[22] Hal R. Varian and Christopher Harris. 2014. The VCG Auction in Theory and Practice. American Economic Review 104,

5 (2014), 442–45. DOI:http://dx.doi.org/10.1257/aer.104.5.442
[23] Christopher A. Wilkens, Ruggiero Cavallo, and Rad Niazadeh. 2016. Mechanism Design for Value Maximizers. CoRR

abs/1607.04362 (2016). http://arxiv.org/abs/1607.04362

[24] Christopher A. Wilkens, Ruggiero Cavallo, and Rad Niazadeh. 2017. GSP — The Cinderella of Mechanism Design. In

Proceedings of the 26th International Conference on World Wide Web (WWW ’17).

http://dx.doi.org/10.1257/mic.20100119
http://dx.doi.org/10.1257/mic.20100119
http://dx.doi.org/10.1145/1250910.1250918
http://dx.doi.org/10.1137/S0895480195280009
http://dx.doi.org/10.1287/moor.6.1.58
http://dx.doi.org/10.1287/moor.6.1.58
https://EconPapers.repec.org/RePEc:eee:gamebe:v:106:y:2017:i:c:p:294-316
https://EconPapers.repec.org/RePEc:eee:gamebe:v:4:y:1992:i:1:p:161-165
https://EconPapers.repec.org/RePEc:eee:gamebe:v:4:y:1992:i:1:p:161-165
http://dx.doi.org/10.1257/aer.104.5.442
http://arxiv.org/abs/1607.04362

	Abstract
	1 Introduction
	1.1 Main questions
	1.2 The VCG (Non) Solution
	1.3 Allocation Curves
	1.4 Generalizing GSP
	1.5 Multi-dimensional bidding

	2 Related literature
	3 Classical case: one bid per bidder
	3.1 GSP pricing

	4 General case: separate bids for each slot
	4.1 GSP prices

	5 Conclusion
	References

