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ABSTRACT
Contextual multi-armed bandit algorithms have received signifi-

cant attention in modeling users’ preferences for online personal-

ized recommender systems in a timely manner. While significant

progress has been made along this direction, a few major chal-

lenges have not been well addressed yet: (i) a vast majority of the

literature is based on linear models that cannot capture complex

non-linear inter-dependencies of user-item interactions; (ii) exist-

ing literature mainly ignores the latent relations among users and

non-recommended items: hence may not properly reflect users’

preferences in the real-world; (iii) current solutions are mainly

based on historical data and are prone to cold-start problems for

new users who have no interaction history.

To address the above challenges, we develop a Graph Regularized

Cross-modal (GRC) learning model, a general framework to exploit

transferable knowledge learned from user-item interactions as well

as the external features of users and items in online personalized

recommendations. In particular, the GRC framework leverage a non-

linearity of neural network to model complex inherent structure

of user-item interactions. We further augment GRC with the coop-

eration of the metric learning technique and a graph-constrained

embedding module, to map the units from different dimensions

(temporal, social and semantic) into the same latent space. An

extensive set of experiments are conducted on two benchmark

datasets as well as a large scale proprietary dataset from a major

search engine demonstrates the power of the proposed GRC model

in effectively capturing users’ dynamic preferences under different

settings by outperforming all baselines by a large margin.
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1 INTRODUCTION
Personalized recommender systems have been widely applied in

many real-world services such as e-commerce platforms, online

advertising, consumption of online content (e.g., books, music,

etc.) [13]. Effective personalized recommendations not only can

help customers identify items of interest more effectively, but can

also substantially increase the profit for the service providers [38].

To this end, there exists rich literature devoted to developing col-

laborative filtering based approaches for modeling user-item inter-

actions with the assumption that all data is collected beforehand.

However, operating on the entire data in a batch fashion makes

these approaches less suited for online recommendation scenarios,

where new users or items arrive continually at a several orders of

magnitude higher rate: e.g., new ads in online advertising platforms

or news at an online newspaper. Under these severe cold-start chal-
lenges, these algorithms either do not scale well when operating on

a growing dataset as vast amount of new data arrive, or they com-

pletely ignore previously computed results and run from scratch

on recent data without exploiting all available data [36].

To address the cold-start challenge in online recommendations,

a number of attempts have been working on exploring contextual

bandit algorithms to model user-item interactions in a timely man-

ner, which yield the state-of-the-art performance [27, 33]. These

methods adaptively learn the underlying representations of users or

items (e.g., user’s preference or item’s characteristic) by introducing

the trade-off strategies in context-based exploration/exploitation

for online decision-making [20]. In particular, the basic idea of

exploitation is to maximize immediate reward given the current

information, while exploration aims to gather more unbiased sam-

ples to improve the accuracy of preference learning. In each round

of contextual bandit algorithms, they update users/items feature

representations based on current positive (e.g., user click recom-

mended items) and negative (e.g., user ignore recommended items)

user-item interactions.

However, existing bandit methods are mostly limited to linear

models or combine user and item feature embeddings via a simple

non-linear concatenation [9, 20, 27], which cannot capture the com-

plex non-linearity of latent user-item interactive structures, leading

to suboptimal online recommendation results [29]. In this work,

we strive to generalize the contextual bandit framework with mod-

eling of non-linearities based on deep neural network architectures.

There are several key technical challenges, in order to fully explore

the neural architecture of contextual bandit framework:

https://doi.org/10.1145/3366423.3380178
https://doi.org/10.1145/3366423.3380178
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Inter-dependencies across multi-modal interactions. To sim-

plify the model design, conventional contextual bandit methods

did not fully explore the negative user-item interactions (user’s

dislike for items) and completely ignored latent relations between

users and non-recommended item candidates (unobserved user-

item interactions) [3, 5]. However, in real life, users’ preference can

be learned from not only his/her positive feedback (e.g., click), but
also the knowledge of his/her negative and unobserved interactions

with items [34]. For example, users’ negative feedback on dislike

recommended items may carry helpful information to reconsider

the relations between users and other non-recommended candi-

dates. In such cases, the multi-modal (i.e., positive, negative and
unobserved) user-item interactions are no longer independent and

are highly correlated in a hierarchical way. Hence, it is challenging

to distill cross-modal signals from the collective behaviors of users.

Efficient feature learning for newly emerged users/items. Al-
though there exist recent work leveraging external features from

users or items (e.g., user social network information and item de-

pendent relations) to quantify potential interactive structures for

new users and items (without interaction logs), a deficiency is that

they use the entire network structure to generate features for new

users/items (e.g., using Laplacian matrix computation) [1], which

makes these methods computationally expensive and not scalable

to online recommendation scenarios. In online recommendation

scenarios, we believe it is of critical importance to develop a con-

textual bandit model that can exploit external features for newly

emerged users and items in an efficient and explicit manner.

To overcome the aforementioned issues, this work develops a

Graph Regularized Cross learning framework (GRC) by jointly mod-

eling cross-modal user-item interactions and contextual features

from either users or items in capturing users’ future preferences in

online recommendation. Specifically, we first propose to enhance

the conventional contextual bandit framework with the neural

network architecture, empowering it to model complex inherent

user-item interactions with non-linearities. In addition, to compre-

hensively model effects of positive and negative interactions as

well as the unobserved interactions (implicit feedback) between

users and non-recommended item candidates, we augment our

GRC model by developing a novel representation framework with

a cross-interaction metric learning framework.

Furthermore, to realize the efficient user preference modeling of

newly emerged users/itemswith the extracted ancillary features, we

propose to leverage local bipartite graph structures between users

and items. In particular, we develop a graph-regularized embedding

module which allows external knowledge to guide the embedding

initialization process of new users/items. With the cooperation of

the metric learning framework and a graph-regularized embedding

module, multi-modal user-item interactions and external network

structural information of users/items can be leveraged to enhance

the representation learning of both users and items. GRC bridges

the gap between dynamic user behavior modeling and latent repre-

sentations using graph embedding, which enables the speed up of

capturing dynamic users’ preferences.

The main contributions of this paper are summarized as follows:

• We study the problem of modeling users’ dynamic preferences

in online recommender systems, with attention to cross-modal

user-item interactions and external features.

• We develop a novel framework GRC with a graph-regularized

embedding module which is tailored to cooperate with the metric

learning technique to model cross-modal user-item interactions.

GRC is a general neural network architecture for contextual

multi-armed bandit problem with the careful consideration of

both positive and negative user feedback as well as the implicit

feedback from non-recommended item candidates.

• Through extensive experiments conducted on three different real-

world datasets, we demonstrate that GRC consistently outper-

forms several state-of-the-art baselines across various settings.

The organization of this paper is as follows. Section 2 formalizes

the problem of contextual bandit learning. Section 3 presents the

details of GRC framework to solve the problem. We explain the

experimental results in Section 4. The related work is discussed in

Section 5. Finally, we conclude this work in Section 6.

2 PRELIMINARIES AND PROBLEM
FORMULATION

We first introduce some terminologies and formalize the problem.

Then, we shortly recapitulate the widely used contextual bandit

algorithms and discuss their limitations in online recommendations.

To better explain the proposed method, we list the main notations

we use in this paper in Table 1.

2.1 Problem Formulation
Contextual Multi-armed Bandit Problem. Contextual multi-

armed bandit algorithms have been widely applied for online per-

sonalized recommendations to balance exploration and exploitation

with the incorporation of various contextual information. In the

multi-armed bandit problem, we consider a scenario of I users (i.e.,
u1, ...,ui , ...,uI ) and J items (i.e., v1, ...,vj , ...,v J ). For simplicity,

we use the index of user i representing ui , and the index of item

j representing vj for rest of the paper. In each trail t , we regard
the candidate item set as arms denoted as At = {at

1
, ...,atk , ...,a

t
K },

where K is the number of arms indexed by k .
At each round t , the algorithm observes a given user ui from the

user set and K arms. We denote user embedding and arm embed-

ding at round t as θuti
and θatk

, respectively. Then, the arm with

the highest expected reward is selected to recommend to user i at
timestamp t and then receives the his/her feedback. In general, the

contextual multi-armed bandit problem can be considered as a se-

quential decision problem, which aims to achieve highest long-term

rewards. Formally, the objective is to maximize the accumulated

rewards RT for previous T trails as follows:

RT =
T∑
t=1

r tk , (1)

where r tk is the actual reward of presented arm atk pulled by the

bandit algorithm in trail t . A nature goal is to pull the arm with the
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Table 1: Symbols and Definitions

Symbol Definition

i , j , k , t the indices of users, items, arms, trails

I , J , K , T the number of users, items, arms, trails

At
the set of arms for candidate item selection in trail t

xtk the context feature vector by integrating user ut and arm ak
r tk , r̂

t
k the observed, expected reward of the pulled arm in trail t

etk , d
t
k the reward expectation and deviation of the pulled arm in trail t

θuti
the embedding of user i in trial t

θatk
the embedding of arm k in trial t

highest estimated reward in each trail. The key idea of contextual

bandit algorithm is learning a reward mapping function in order to

infer the arm with the highest reward to pull.

2.2 Linear Upper Contextual Bandit (LinUCB)
Among various contextual bandit algorithms, Linear Upper Confi-

dence Bound (LinUCB) [20] is a key architecture for online personal-

ized recommendation tasks and has shown to provide superior per-

formance over others [1]. Many subsequent extensions enhanced

the basic LinUCB framework by incorporating analysis on various

properties of users and items [3, 9, 27]. Specifically, the reward

mapping function of the LinUCB framework consists of two impor-

tant components: (i) reward expectation: it estimates the interaction

score between user i and arm atk indicating the likelihood of user

i’s interest in arm atk . (ii) reward deviation: it applies upper confi-
dence bound to assess the uncertainly of the reward expectations,

which aims to form unbiased samples by pulling aims with high

uncertainty to improve the learning accuracy. A smaller confidence

interval indicates the lower uncertainty in the derived reward and

a larger confidence interval means that the derived reward has a

higher uncertainty. Formally, the reward between user i and arm atk
in trail t can be calculated by the summation of reward expectation

and deviation as follows:

r̂ tk = xtkwk︸︷︷︸
reward expectation e tk

+α
√
xtk

TA−1
k xtk︸          ︷︷          ︸

reward deviation d tk

, (2)

where xtk represents the concatenated feature vector of user em-

bedding θuti
and arm embedding θatk

, Ak := OT
kOk + I,Ok ∈ Rm×d

is a design matrix in trial t , whose rows correspond tom training

inputs (e.g.,m contexts that are observed previously for arm atk ),

wk denotes the learnable weight vector of arm atk , y
t
k represents

the predicted reward of arm atk in trail t , and α is the coefficient to

balance the exploration and exploitation.

However, several significant limitations exist in the LinUCB

based solutions: (i) it assumes that reward expectation of an arm is

linear in the contextual feature vector. As a result, LinUCB cannot

deal with the complex non-linear interaction structures between

users and items in real-world applications. (ii) The LinUCBmethods

often count on a sufficient amount of positive and negative user-

item interaction data, but fail to model the implicit feedback of item

candidates. It follows that these methods may not comprehensively

capture the latent interaction structures between users and items.

(iii) The success of most existing LinUCB models rely on the vari-

ous features from both users and items. Many practical scenarios,

however, only partial features of users or items could be obtained

for analysis at the training time. To overcome the above limitations,

we propose to explicitly explore the cross-dimensional signals from

multi-modal user-item interactions and partial external contextual

features in advancing the online personalized recommendation

task.

3 METHODOLOGY
In this section, we present the details of GRC framework, which

pursues a full neural treatment of reward mapping function model-

ing to accurately predict the rewards between users and candidate

arms. The overall framework is shown in Figure 1.

3.1 Neural Contextual Bandit Framework
In this work, we propose an instantiation of GRC adopting a multi-

layer perceptron (MLP) module to endow the bandit algorithm of

modelling non-linear structure of user-item interactions. In particu-

lar, in trail t , we first concatenate the embedding vector of user θuti
and arm θatk

as xtk , and then feed the concatenated representation

vector into the MLP module. The output of the final layer in MLP

is the reward expectation etk . By doing so, the above incorporation

unifies the strengths of dynamics of contextual bandit algorithm

and non-linearity of MLP for modelling time-evolving user-item

latent structures. Formally, we present MLP as:

z1 =ϕ1(W1z0 + b1),
· · ·

zL =ϕL(WLzL−1 + bL)

ŷ =WozL + bo, (3)

where L is the number of hidden layers (indexed by l ). For the l layer,
ϕn ,Wn and bn represent the activation function (e.g., ReLU or tanh)

of MLP layers and learnable parameters. We take the contextual

vector xtk as the input of MLP (i.e., z0 = xtk ), the reward expectation
is formally represented as etk = MLP(xtk ).

By doing so, we mitigate the limitation of existing contextual

bandit techniques with the assumptions, i.e., linear or simple non-

linear payoff in estimating the uncertainty of reward deviation,

However, directly deriving the corresponding upper confidence

bound for uncertainty estimation remains as a daunting task, since

the context information is provided in a dynamic environment and

is not highly correlated with previous states and actions.

To address the aforementioned challenge, we apply dropout lay-

ers to learn the reward mapping function by unifying the strengths

of neural network models and stochastic modeling [6]. Particu-

larly, to supercharge our model with arbitrary depth and non-

linearities, we apply dropout before every weight layer, which

is shown to be mathematically equivalent to an approximation to

the probabilistic deep Gaussian process [7]. After our model iterat-

ing to convergence, uncertainty estimates can be extracted from

dropout neural networks. In particular, we sample N times from

Bernoulli(N ,pl ) distribution of network configurations for each

layer l , and obtain its corresponding parameters {W1, · · · ,WN }.

HereWN = {WN
1
, · · · ,WN

L } are the L weight matrices sampled
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Figure 1: The Graph-Regularized Cross-Modal Learning (GRC) Framework. GRC endows the contextual bandit architecture
with the complex level of non-linearities, with the integration of a multi-layer perceptron and dropout mechanism. To accu-
rately select an arm to users for recommendation, GRC carefully investigate the inter-dependencies among positive, negative
and unobserved user-item interactions based on a deep metric learning framework. To alleviate the data incompleteness and
sparseness issue, a graph-regularized embedding module is introduced to effectively transfer knowledge from ancillary fea-
tures in guiding the cross-modal behavior learning.

in t-th iteration. Thereafter, we can formally evaluate the Monte

Carlo estimates with the input variables as:

etk ≈
1

N

N∑
n=1

e
(t ,n)
k =

1

N

N∑
n=1

MLP
(n)(xtk ), (4)

where MLP
(n)

represents the MLP with parameter set Wn
. Sim-

ilarly, we can evaluate the second moment of input variables in

Monte Carlo estimation process as follows:

dtk ≈ τ−1 +
1

N

N∑
n=1

[(e
(t ,n)
k )2 − (etk )

2], (5)

where τ is the model precision, which is defined as τ :=
pl 2

2Nλ [28].

The collected results of stochastic forward passes through the

model, and can be incorporated into our neural network model

which is trained with dropout mechanism.

3.2 Cross-Modal Interaction Modeling with
Metric Learning

Another challenge of existing contextual bandit algorithm is how

to sufficiently explore user-item interactions, very few positive

or negative rewards based on clicks are observed in return, with

other unselected items in the candidate pool completely ignored.

To address this challenge, we augment our neural contextual bandit

framework to carefully investigate the inter-dependencies across

multi-modal user-item interactions (i.e., positive, negative and unob-
served) with metric learning [24]. The basic idea of metric learning

is to learn a distance metric to make similar input pairs closer to

each other and make dissimilar input pairs further apart.

To model the latent relations between users and items, we apply

triangle inequality relation structures to capture the dependencies

among positive, negative and other unselected candidate user-item

interactions. This is based on the assumption that users are more

likely to be correlated with their interested items than uninterested

ones [15]. In particular, given the preference representation θuti
of a user i , the representations of clicked items are expected be

closer to θuti
than the representations of the unselected items in the

feature space, while the representations of unselected items should

be closer to θuti
than the representations of the unclicked items. In

this way, we incorporate positive, negative interactions as well as

the implicit feedback of those unselected candidate items. Formally,

the metric learning module consists of two key steps:

(i) If the selected arm atp receives the positive feedback from user i

at trail t (user i is interested in item atp ) in trail t , our GRC will guide

the representation learning process to make the embedding vectors

of user θuti
and arm θatp closer to each other, and the embedding

vectors of user θuti
and unchosen arms (i.e., θatp ∈ At \θatk

) further

apart.

(ii) If we observe the negative feedback for the selected arm atp
from user i at timestamp t (user i is uninterested in item atp ), the

learned embedding vectors of user θuti
will be more different from
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that of uninterested arm θatp , and be closer to embedding vector

of unchosen arms (increase their probabilities to be selected in the

next trail t + 1).
We define the loss function of our metric learning module as:

LMetr ic =
∑
t

( ∑
atk ∈A

t
neд

r tp [m + ∥θuti
− θatp ∥

2

2
− ∥θuti

− θatk
∥2
2
]+

+ (1 − r tp )[m + ∥θuti
− θatk

∥2
2
− ∥θuti

− θatp ∥
2

2
]+
)
, (6)

where At
neд is sampled from the rest candidate arm in pool At

. In

addition, ∥ · ∥2 denotes the 2-norm. Note that the feature vector and

embedding vector share the same dimension size. [·]+ = max(·, 0)

is the standard hinge loss, andm indicates a positive margin value.

3.3 Graph-Regularized Embedding Module
In real-world online recommendation scenarios, the contextual

features of users or items are often incomplete. To transfer the

knowledge from external sources and address the challenge of data

incompleteness and sparseness, we develop a graph-regularized em-

bedding module to bridge user behavior modeling with correlation

graph embedding, such that the external knowledge of users and

items can be leveraged to guide the cross-modal embedding and

jointly alleviate data incompleteness and sparseness issues. The key

idea of our graph-regularized embedding module is to learn latent

representations of incoming users or items by leveraging their ex-

plicit connections with existing ones, such as users’ social network

and categorical dependencies between items. We first define the

following inputs to our module:

Definition 1. Correlation Graph G. Given relations between
users or items from external knowledge, we define a correlation graph
G = (V, E) in which V and E represents the set of users or items,
and their relations, respectively. Particularly, for users, each node and
each edge in the correlation graph G represents the individual user
and their social relationships. For items, each node and each edge in
G indicates the individual item and their categorical dependencies.

In the our graph construction process, an edge between node

i and i ′ is added when there exists social connection between i
and i ′. Furthermore, since item-category bipartite graphs are het-

erogeneous in nature, involving diversity of node types (i.e., items

and categories), we construct a heterogeneous item correlation

graph. In particular, each node in the heterogeneous item corre-

lation graphG represents the individual item/category. Each link

in G indicates the node relationship. Upon the above definitions,

to learn feature representations for users in homogeneous graph

G, we leverage node2vec [11] framework which is a neighborhood

sampling strategy to smoothly interpolate between BFS and DFS.

To learn a low-dimensional vector representation for each node

in the heterogeneous item correlation graphG, we utilize metap-

ath2vec [4] framework to preserve both structural and semantic

correlations of graph G. In this work, we leverage random walk

to treat network structures as the equivalent of sentences, which

generates the input to our embedding module. We further define

the random walk path in our model as:

Definition 2. RandomWalk Path. The random walk path in
homogeneous user correlation graph is defined as a node sequence

Algorithm 1: The training process of GRC model.

Require: batch size bsize
1: Randomly initialize parameters

2: TrainBatch=[]

3: for all trail t do
4: Observe features of all arms At

5: for all arm atk in the candidate pool At do
6: if arm atk is new then
7: Path=RandomWalk(G, atk )

8: initialize the embedding vector of θatk
by Eq. (7)

9: end if
10: calculate r̂ tk = etk + αd

t
k according to Eq. (5)

11: end for
12: Choose arm atp = argmaxatk ∈A

t r̂ tk and observe a

real-valued reward r tp
13: Sample a set of negative samples At

neд from the rest

candidates in pool At

14: TrainBatch.append(ut ,atp , r
t
p , [..., r̂

t
k , ...],A

t
neд )

15: if length(TrainBatch)==bsize then
16: calculate the loss by Eq. (9)

17: update all parameters by Adam Optimization

18: TrainBatch=[]

19: end if
20: end for

P = {...,vi , ...} wherein the node vi in the walk is randomly selected
from the neighbors of its predecessor vi−1. In heterogeneous item-
category correlation graph, the random walk path with the meta-path
generation scheme was defined as those in [4]. We define our graph-
constrained embedding learning process as:

LGraph = −
∑

P ∈S(P )

( ∑
(v∗,v)∈P

log(σ (θTv θv∗ ))

+
∑
v ′

Ev ′∼Dist(v ′) log(σ (−θ
T
v ′θv∗ ))

)
, (7)

where σ represents Sigmoid activation function, v and v ′
denotes

the neighborhood context and non-neighborhood nodes of center

node v∗ on random walk path P , and S(P) is the path set. We de-

fine RandomWalk(G,atk ) function (defined in [4, 11]) to represent

the random walk process on G which consider atk as the starting

point. By deriving the graph-constrained embedding, the embed-

ding vectors of newly emerged users or items are initialized in a

more reasonable way than random initialization.

3.4 The Learning Process of GRC Framework
As we introduced in Section 2, the objective of the arm selec-

tion strategy in online learning scenarios is to derive the value of

r̂ tk which denotes the estimated reward of k-th arm candidate in

trail t . In general, online recommendation can be considered as a

personalized ranking task. To this end, we learn the parameters of

our GRC with a ranking-aware objective, i.e., all arms with positive

feedback should be ranked higher than the arms with the ones

with negative feedback. We generate the ranking-aware objective
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with the integration of pointwise [16] and listwise loss [37], which

is more beneficial for personalized ranking task. In the training

process of GRC, if arm atk is observed positively interacted with the

target user, we will assign a higher ranking score to it. Otherwise,

the ranking score of arm atk will be set to be lower than other aims.

Therefore, our GRC framework aims to predict the relative orders

between user-item interactions, instead of inferring their absolute

scores as optimized in pointwise loss. To maximize the likelihood

for the ranking score vector, we define our loss function as:

LPayof f = −
∑
t
r tp log(

etp∑
k e

t
k
) + (1 − r tp ) log(1 −

etp∑
k e

t
k
). (8)

By integrating the loss function of our triple relation in Equa-

tion 6, we define our designed joint objective function as:

Ljoint = LPayof f + λLMetr ic + LGraph, (9)

where λ is the coefficient to control the weight of the term for

metric learning module. The GRC can be learned by minimizing the

above loss function between the observed user-item interactions

and the estimated reward. We denote the batch size as bsize and
solve the above optimization problem using the Adam optimizer.

Based on its sub-steps, we could obtain the total expected payoff

E(
∑T
t=1 r

t
p ) from previous T trails, where atp is the selected arm

which maximizes the expected payoff in trail t .
Algorithm 1 summarizes the training process of GRC. In each

iteration of trail t . we could observe features of all arms At
for

each arm at and conduct random walks on graph G if the arm is

new to us, otherwise, we update based on Equations 3 and 5. After

that, we choose an arm atp which generates the largest reward. In

addition, we also choose a set of other armsAt
neд . a

t
p together with

At
neд are add into the training batch for later optimization. If we

accumulate enough arms in the training batch, we calculate the

loss based on Eqn. (9) and update the model parameters by Adam

optimization. We repeat this process for all trails to learn the hidden

parameters.

4 EVALUATION
In this work, we performed extensive experiments on three real-

world datasets, including two benchmark datasets (i.e., Delicious
and LastFM datasets) and a large-scale click stream data (i.e., Ads
dataset) from a major commercial search engine. We also com-

pared GRC with several state-of-the-art baselines. Particularly, our

experiments aim to answer the following research questions:

• Q1: How is the performance of our GRC in online personalized

recommendation tasks as compared to state-of-the-art methods?

• Q2: How is the performance of GRC variants with different com-

binations of key components in the joint framework?

• Q3: How is the performance ofGRC with different configurations

of loss function?

• Q4: How does our GRC work for online personalized recommen-

dation task with different exploration coefficient (i.e., α ) and arm

set size (i.e., K )?

• Q5: How do the key hyperparameter settings impact GRC’s per-
formance?

In the following subsections, we first present the experimental

settings and then answer the above research questions in turn.

4.1 Experimental Settings
4.1.1 Data Description. In our experiments, we evaluate the

model performance on three different types of datasets: (i) social

bookmarking web service data–Delicious; (ii) music streaming ser-

vice data–LastFM; (iii) a large-scale ads click stream data from a

major search engine. The statistics of the three datasets are sum-

marized in Table 2 and details are shown as follows:

• The LastFM Data. The LastFM dataset has been widely used

as a benchmark in evaluating the performance of bandit algo-

rithms [35]. This dataset contains 1,892 users and 17,632 artists

(items), which was collected from a music streaming service web-

site
1
. In this dataset, we generated payoffs of recommendation

candidates for each user by leveraging the information of his/her

“interested artists”. In particular, in each trail t , the payoff r tk is

set to 1 if the selected user ut listened to any music from artist

atk . Otherwise, r
t
k = 0.

• The Delicious Data. The Delicious data is another benchmark

dataset for bandit algorithm performance validation [33]. 1,861

users and 69,226 URLs (items) were included in this dataset. The

payoffs between users and items are generated based on the book-

mark behavior information in this dataset. Specifically, we set

the payoff r tk = 1 if the user bookmarked URL atk and r tk = 0

otherwise in each trail t .

• Ads Click Stream Data. We collected a large-scale, proprietary

search ads click stream data from Yahoo Gemini platform, which

offers an online search and native advertising. Search advertising

is a multi-billion dollar industry where advertisers promote their

products to users by having search engines display their adver-

tisements (ads) on contextually relevant search results pages. In

a commercial search engine, a large number of new ads will be

continuously introduced to the system leading to a massive cold

start problem, which provides us a good opportunity to investi-

gate the performance of our GRC in real-world recommendation

scenarios.

4.1.2 Data Pre-processing. To evaluate our GRC framework in

the settings which fit the contextual bandit problem, we conducted

the following data pre-processing steps as follows:

Pre-processing of LastFM and Delicious Datasets. Following
the same experimental settings in [36], we first constructed the TF-

IDF feature vector of each item (arm) using its associated tags, and

then reduced the dimension of the generated feature vectors via the

Principle Component Analysis (PCA) technique. Specifically, we

selected the first 25 principle components to generate the context

feature vectors in both two datasets, i.e., feature dimension is 25.

1
http:www.last.fm
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Table 2: The Statistics of Datasets

#Users #URLs #Tags #Bookmarks #Relations

Delicious 1, 867 69, 226 53, 388 104, 799 7, 668

#Users #Artists #Tags #Listened #Relations

LastFM 1, 892 17, 632 11, 946 437, 594 15, 329

#Queries #Ads #Categories #Clicks #Impressions

Ads Click 3, 111, 569 18, 197 1, 000 2, 256, 380 72, 415, 447

Then, we set the size of candidate arm set K as 100 and generate it

as follows: we chose one arm from the set of nonzero payoff items

based on the global observations in the datasets and selected the

remaining 99 ones from the same set of zero-payoff items randomly.

Pre-processing of Ads Click Stream Data. In our prorietary,

large-scale search-ads click-stream data, we follow the same experi-

mental settings in [39] and build the ads pool by randomly selecting

100 ads (K = 100) from the entire set of ads. This dataset contains

72.4 million impression records and 2.2 million click records that

represent the users’ response to the ads shown on the large number

of queries. Each impression record represents an ad shown to the

user on the search result page of a particular search query. If the

user clicks on the shown ad, a click event happens and is logged

accordingly. Click attribution is done at the event level, which is

typically a unique identifier for each ad impression and its corre-

sponding click (if a click event happens). We set the dimension of

the embedding feature vectors of queries as 300 and generate the

embedding vectors for the whole queries rather than individual

query terms, achieving the aggregation level query embedding to

capture the semantics [10].

4.1.3 Evaluation Protocols and Metrics. In our experiments,

we evaluated the performance of all compared algorithms using the

unbiased offline evaluation protocol proposed in [19]. In particular,

in each trail t , the interaction events between user ut and the

selected arm atk by each method will be evaluated using ground

truth information generated from historical user-item interaction

events. In the training process, our GRC will update the model

parameters based on the output by a particular approach and move

forward to the next trail (t + 1).
We evaluated the model performance by using the following two

widely used metrics in online personalized recommendation: Cu-
mulative Rewards (CR) and Click Through Rate (CTR) [35] (Note that
a higher CC and CTR score indicates better model performance):

• Cumulative Rewards (CR): it represents the cumulative value

of each observed reward r tk from all previous trails (refer to Eq 2

for mathematical definition).

• Click Through Rate (CTR): it indicates the ratio of clicks on

recommended items divided by the number of recommendations.

We computed the average CTR in every 5000 trails based on the

aforementioned unbiased offline evaluation protocol.

4.1.4 BaselineMethods. In our evaluations, we compare the per-

formance GRC against three types of baselines: i) conventional con-

textual bandit methods (i.e., GCLUB[21], LinUCB[20], UCBPMF[27],

CLUB[9], PTS[9]); ii) bandit algorithms with neural network archi-

tectures (i.e., NN [5], DW [3]); iii) online learning framework for

recommendation system (i.e., eALS [13]). Since there is no direct

contextual multi-armed bandit scenarios, it is not fair to compare

directly against second and third type of baselines. Instead, we

integrate them with ϵ-greedy bandit framework which serves as a

generic bandit model for online personalized recommendations as

suggested in [31].

4.1.5 Reproducibility andParameter Settings. We summarized

the parameter settings of GRC in our experiments in Table 3. In

addition, we vary each of key parameters in GRC and fix others to

examine the parameter sensitivity. We implemented our framework

based on TensorFlow and chose Adam [17] as our optimizer to learn

the model parameters. The hyperparameter settings are optimized

with the grid search strategy [11]. For all bandit algorithm, we used

the same explore coefficient α . For all neural network based meth-

ods, we use the same parameters as GRC which are listed in Table 3.

In addition, the parameters of all baselines have been carefully

tuned to the best performance using the grid search strategy.

Table 3: Parameter Settings

Parameter Value Parameter Value

# Negative Samples 8 Exploration Parameter α 0.3

# Hidden Layers 4 Dropout Ratio 0.4

Margin 1 Metric Learning Ratio λ 0.1

Batch Size 8 Learning Rate 0.001

4.2 Performance Comparison (Q1)
We evaluated the performance of all compared algorithms on three

different type of datasets (i.e., the LastFM, Delicious and Ads Click

Stream Data), and reported the evaluation results in Figure 2 and

Figure 3 in terms of CR and CRT, respectively. Due to space limit,

we only reported the evaluation results in terms of CTR on ads click

stream data and similar results could be observed for other datasets.

In our experiments, we set the size of candidate arm setK as 100. All

the methods are executed up to 21, 000 iterations on each dataset.

Based on the experimental results, similar trend can be obtained

with more trails (i.e., > 21, 000). 21, 000 is only tentatively set for

illustrative purpose. From the evaluation results, we summarize

several key observations as follows:

First and foremost, we can observe that GRC consistently out-

performs other competitive baselines on all datasets over different

trials. Specifically, GRC achieves significant improvements over the

best performing baseline in terms of CR and CTR on each dataset.

This set of results clearly demonstrate that GRC achieves the state-

of-the-art performance for online recommendations. It is important

to note that the performance gain between GRC and other baselines

does increase when the number of trails increases in most cases,

which suggests that our GRC is more efficient and effective in cap-

turing users’ dynamic preferences at the early stage of exploration.

In general, the above observations justify the efficacy of GRC which

collectively models users’ various response interactions and even-

tually helps to select the most likely recommendations/clicks.
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(c) Ads Click Stream Data

Figure 2: Performance comparison of all algorithms on three real-world datasets in terms of CR.

Second, the large performance gap between GRC and conven-

tional contextual bandit algorithms (i.e., LinUCB, UCBPMF, CLUB

and PTS) clearly shows the limitation of those approaches: (i) the

inner product, which simply combines the multiplication of latent

features linearly, may not be sufficient to capture the complex struc-

ture of dynamic user-item interactions; (ii) these models do not

consider the imbalance issue and produce suboptimal performance

with limited amount of positive user-item interaction data in real-

world online personalized recommender systems. Furthermore, an-

other interesting observation is that our GRC method could achieve

more significant performance improvement over other baselines in

Ads click stream data as compared to LastFM and Delicious data.

This is due to that modeling cross-modal imbalanced user-ads inter-

actions is more effective than modeling user-music and user-book

interactions in LastFM and Delicious data.

Third, as compared to neural network based bandit algorithms

that also apply the deep learning techniques but in different ways,

GRC exhibits significant performance improvement. This is remark-

able, since GRC implies the potential of improving existing neural

bandit algorithms in learning better user/item latent representa-

tions, by designing an integration framework of a graph-regularized

embedding module and metric learning technique.

4.3 Model Ablation Study of GRC (Q2)
In addition to comparing GRC with state-of-the-art techniques, we

also aim to get a better understanding of the proposed framework

and evaluate the key components of GRC. Particularly, we aim to

answer the following question: whether each key learning compo-

nent plays a crucial role in the joint representation learning model

GRC? Hence, in our evaluation, we consider three model variants

of GRC:

• Efficacy of the graph-regularized cross-modal learningmodel
(GRC-n): To make a fair comparison, we design the variant only

with the neural contextual bandit architecture to model the non-

linear structure of user-item interactions, i.e., without the cooper-
ation between graph-regularized embedding module and metric
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Figure 3: (a) Performance comparison of all algorithms on
Ads Click Stream Data in terms of CTR; (b) Performance
comparison v.s. values of coefficient α which balances the
exploration and exploitation.

learning technique.

• Efficacy of cross-modal interaction learning framework
(GRC-g): To investigate the effect of our developed cross-modal

interaction learning framework based on metric learning, we pro-

posed another simplified version of GRC without the component

of cross-modal user-item interaction modeling.

• Efficacy of graph-regularized embedding module (GRC-m):

To show the effect of our model in learning robust representa-

tions for users/items using their the external knowledge under

data incompleteness, we proposed a simplified version of GRC
without the graph-regularized embedding module in encoding

the dependencies between users or items.

We reported the evaluation results in Table 4. We could notice

that the full version of GRC achieves the best performance in all

cases, which suggests: (i) our graph-regularized embedding module

can utilize external knowledge (i.e., explicit user/item connections)

to effectively capture contextual signals of users and items with



Learning from Cross-Modal Behavior Dynamics with Graph-Regularized Neural Contextual Bandit The Web Conference, Apr, 2020, Taipei

Table 4: Model ablation study of GRC in terms of CR and
CTR on three datasets.

Data Source LastFM Delicious Ads Click

Metric CR CTR CR CTR CR CTR

GRC-n 256 1.04% 196 0.94% 31 0.14%

GRC-g 319 1.44% 227 1.16% 32 0.12%

GRC-m 422 2.60% 225 1.00% 251 1.71%

GRC 894 2.26% 348 1.18% 272 1.82%

Table 5:Mathematical definitions of different loss functions.

Loss Definition

MSE

∑
t ∥r tp − Etp ∥

2

2

CE −
∑
t
(
r tp log(Etp ) + (1 − r tp ) log(1 − Etp )

)
NS −

∑
t r tp

(
log(σ (Etp )) +

∑
k′ Ek′∼Dist(a) log(σ (−Etk′ ))

)
incomplete feature information. (ii) When the metric learning tech-

nique is applied in the embedding learning process to model the

inter-dependencies between multi-modal user-item interactions,

the performance for online personalized recommendation is im-

proved. (iii) The efficacy of GRC in modeling complex interdepen-

dencies across multi-modal interactions.

Table 6: Loss function configuration effect of GRC in terms
of CR and CTR on three datasets.

Data Source LastFM Delicious Ads Click

Metric CR CTR CR CTR CR CTR

GRC-mse 556 2.04% 212 1.14% 131 1.12%

GRC-ce 220 1.06% 236 1.05% 208 1.72%

GRC-neg 883 3.36% 227 1.03% 162 1.24%

GRC 894 2.26% 348 1.18% 272 1.82%

4.4 Effect of Loss Function Configuration in
GRC Framework (Q3)

To show the effect of loss function configuration in our developed

GRC, we replaced our designed loss function with three variants:

• GRC-mse: with the loss function based on mean squared er-

ror [32].

• GRC-ce: with the loss function based on cross entropy [12].

• GRC-neg: with the loss function using negative sampling tech-

nique [26].

Specifically, GRC-mse and GRC-ce correspond to the loss function

generation with pointwise method, and GRC-neg represents the

loss function generation with listwise method. The mathematical

definitions of different types of loss function are presented in Table 5.

We can observe that GRC achieves better performance as compared

to other variants in most evaluation cases. The above empirical

evidence provides support for our motivation of designing our loss

function which integrates the metric learning with the contextual

bandit framework, to alleviate the data imbalance issue.

4.5 Effect of Exploration Coefficient α and Arm
Set Size K (Q4)

Effect of Exploration Coefficient α . The exploration coefficient

α plays a pivotal role in balancing the exploration and exploitation

in bandit algorithm. We further performed experiments to investi-

gate the effect of α in GRC and other representative baselines (i.e.,
GCLUB, LinUCB and UCBPMF) which involve the same coefficient

parameter. Figure 3(b) shows the evaluation results as measured

by CR on the ads click stream data. According to the results, GRC
is not strictly sensitive to parameter α and is able to consistently

reach high performance under different parameter choices, further

suggesting the robustness of our GRC in the trade-off between the

exploration and exploitation in the online recommendation.

Effect of Arm Set Size K . To further investigate the robustness

and generalization ability of different bandit algorithms in practical

online recommendation scenario, we examined the scenarios with

different sizes of the arm set (i.e., K). As shown in Table 7, we

varied the value of K from 100 to 300 and reported the accumulated

rewards at the 21, 000-th trails. We can notice that GRC consistently

outperforms all compared methods over different size of arm set.

Moreover, another interesting observation is that GRC is more

robust to the large value of K , i.e., the accumulated rewards of

GRC decreases much slower than all compared baselines and finally

achieve similar performance with smaller size of arm set. This

reflects the strong expressiveness and generalization of our GRC
since increasing the number of candidate arms does not lead to

suboptimal performance. Hence, our proposed GRC has remarkable

generalization ability, and thus is very suitable for practical use in

large-scale online recommender systems.

Table 7: Performance comparisons of different methods in
ads dataset in terms of arm set size K .

Value of K 100 200 300

Metric CR CTR CR CTR CR CTR

GCLUB 108 0.71% 96 0.58% 73 0.44%

LinUCB 39 0.46% 23 0.24% 20 0.12%

UCBPMF 66 0.52% 62 0.34% 56 0.32%

CLUB 10 0.04% 5 0.02% 3 0.05%

PTS 61 0.48% 47 0.33% 48 0.27%

ϵ-NN 30 0.17% 10 0.03% 6 0.03%

ϵ-DW 29 0.21% 17 0.12% 10 0.03%

ϵ-eALS 10 0.03% 3 0.02% 3 0.02%

GRC 272 1.82% 208 1.26% 172 1.08%

4.6 Hyperparameter Sensitivity Studies (Q5)
The GRC model involves several parameters (e.g., Metric Learning

Ratio λ, Dropout Ratio and # of Negative Samples). To investigate

the robustness of GRC framework, we examine how the different
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Figure 4: Hyperparameter sensitivity studies of GRC on Ads Click Stream Dataset

choices of parameters affect the performance of GRC on Ads click

stream data. Except for the parameter being tested, we set other

parameters at the default values (see Table 3).

Figure 4 shows the evaluation results on ads click stream data

(measured by CR) as a function of one selected parameter when

fixing others. Overall, we observe that GRC is not strictly sensitive

to these parameters, which further demonstrates the robustness of

our proposed framework. In particular, we can observe that GRC
achieves better performance with the increase of batch size, but

model performance decreases with a larger value of batch size. The

reason is that a smaller batch size will update model parameters in

a more timely manner. We set batch size as 8 in our experiments

due to the consideration of the trade-off between the effectiveness

and computational cost. Additionally, different from the low impact

of margin and metric learning ratio, the dropout ratio is negatively

correlated with the model performance as shown in Figure 4(e).

5 RELATEDWORK
Contextual Bandit Algorithms. Online learning is one of the

fundamental challenges in recommendation systems. Prior works

have made significant advances to develop various contextual ban-

dit algorithms for online personalized recommendations [8, 14, 18,

20, 25, 33, 39, 40]. Specifically, the early pioneer work by Li et al.
[20] applied the contextual-bandit approach to the personalized

recommendation problem with the assumption of the expected

reward is linear with respect to context. Many follow-up works

extend the basic LinUCB framework by considering historical data

reuse [14], latent feature learning [34] and time varying contextual

scenario [34].

Motivated by the unprecedented achievements of deep recom-

mendation techniques, many recent works followed the idea of

integrating transfer learning and neural network architecture [25,

29, 30]. For example, Liu et al. [30] applied neural contextual multi-

armed bandits to online learning of response selection in retrieval-

based dialogmodels. Different from existing contextual bandit meth-

ods, we propose to not only leverage the neural network architec-

ture to capture the dynamic, non-linear, user-item interactions; but

also enhance online personalized recommendations via the integra-

tion of metric learning and graph-regularized embedding module.

CollaborativeContextual Bandit Framework. Collaborative
Filtering (CF) has been widely applied to various recommendation

systems [2, 12, 23]. There exist several attempts on combining con-

textual bandit models with collaborative filtering techniques [1, 22,

36]. For example, Wu et al. [36] proposed a collaborative bandit

algorithm using the adjacency graph among users for online updat-

ing settings. Li et al. [22] took into account the collaborative effects
in bandit algorithms by grouping users based on their predefined re-

lations. However, these approaches are computationally expensive

and require repeated offline training using pre-obtained network

information, which is unscalable and inefficient in the training pro-

cess. Therefore, it is very difficult to adapt these models to real-time

online recommendations. To address this issue, our GRC enables an

effective online learning process to capture time-evolving user-item

interactions in a timely manner.

6 CONCLUSION
In this paper, we studied the contextual bandit problem for online

personalized recommendations. We proposed a graph-regularized

cross-modal learning framework that collectively addresses the

critical challenges of modeling complex non-linear user-item in-

teractions. In particular, we comprehensively utilize both positive,

negative user-item interactions as well as unrecommended items

via metric learning. An extensive set of experiments on three real-

world datasets (i.e., two public benchmark datasets along with a

proprietary, large-scale advertising dataset from a major search

engine) demonstrate that GRC achieves significant performance

improvements over the state-of-the-art baselines. For future work,

we plan to further extend GRC to other sequence modeling tasks for

online recommender systems and online advertising scenarios, e.g.,
cold-start ads conversion estimation, personalized recommendation

for ads campaign and ads re-engagement.
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