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Abstract
Applications of key-value (KV-)storage often exhibit high

spatial locality, such as when many data items have identi-

cal composite key prefixes. This prevalent access pattern is

underused by the ubiquitous LSM design underlying high-

throughput KV-stores today.

We present EvenDB, a general-purpose persistent KV-

store optimized for spatially-local workloads. EvenDB com-

bines spatial data partitioning with LSM-like batch I/O. It

achieves high throughput, ensures consistency under multi-

threaded access, and reduces write amplification.

In experiments with real-world data from a large analytics

platform, EvenDB outperforms the state-of-the-art. E.g., on

a 256GB production dataset, EvenDB ingests data 4.4× faster
than RocksDB and reduces write amplification by nearly

4×. In traditional YCSB workloads lacking spatial locality,

EvenDB is on par with RocksDB and significantly better than

other open-source solutions we explored.

1 Introduction
1.1 Motivation: spatial locality in KV-storage
Key-value stores (KV-stores) are widely used by a broad

range of applications and are projected to continue to in-

crease in popularity in years to come; market research iden-

tifies them as the “driving factors” of the NoSQL market,

which is expected to garner $4.2B by 2020 [8].
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Figure 1. Distribution of mobile app events by app id (log-

log scale) in a production analytics feed (2B events).

KV-stores provide a simple programmingmodel. Data is an

ordered collection of key-value pairs, and the API supports

random writes, random reads, and range queries.

A common design pattern is the use of composite keys
that represent an agglomerate of attributes. Typically, the

primary attribute (key prefix) has a skewed distribution, and

so access via the composite key exhibits spatial locality, as
popular key prefixes result in popular key ranges [28].

One example of this arises in mobile analytics platforms,

e.g., AppsFlyer [2], Flurry [3], and Google Firebase [5]. Such

platforms ingest massive streams of app event reports in

real-time and provide a variety of insight queries into the

data. For example, Flurry tracked events from 1M+ apps

across 2.6B user devices in 2017 [4]. In order to offer per-

app analytics efficiently, such services aggregate data in KV-

stores indexed by a composite key prefixed by a unique

app id, followed by a variety of other attributes (time, user

id, device model, location, event type, etc.). We examine a

trace of almost 2B events captured from a production mobile

analytics engine over half an hour. Figure 1 shows the access

frequency distribution over the 60K app ids occurring in this

stream. It follows a marked heavy-tail pattern: 1% of the apps

cover 94% of the events, and fewer than 0.1% cover 70% of

them.

Composite keys arise in many additional domains, includ-

ing messaging and social networks [28]. For example, a back-

end Facebook Messenger query may retrieve the last 100
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messages for a given user [24]; in Facebook’s social network,

a graph edge is indexed by a key consisting of two object ids

and an association type [21]. Spatial locality also arises with

simple (non-composite) keys, for example, when reverse URL

domains are used as keys for web indexing [30].

The prevalence of skewed (e.g., Zipfian) access in real

workloads is widely-recognized and reflected in standard

benchmarks (e.g., YCSB [31]). But these benchmarks fail to

capture the spatial aspect of locality, which has gotten far less

attention. In this work, we make spatial locality a first-class

consideration in KV-store design.

1.2 Spatial locality: the challenge
The de facto standard design for high-throughput KV-stores

today is LSM (log-structured merge) trees [42]. LSMs initially

groupwrites into files temporally rather than by key-range. A
background compaction process later merge-sorts any num-

ber of files, grouping data by keys.

This approach is not ideal for workloads with high spa-

tial locality for two reasons. First, popular key ranges are

fragmented across many files. Second, compaction is costly

in terms of both performance (disk bandwidth) and write
amplification, namely the number of physical writes associ-

ated with a single application write. The latter is particularly

important in SSDs as it increases disk wear. The temporal

grouping means that compaction is indiscriminate with re-

spect to key popularity: Since new files are always merged

with old ones, “cold” key ranges continue to be repeatedly

re-located by compactions.

Another shortcoming of LSM is that its temporal orga-

nization, while optimizing disk I/O, penalizes in-memory

operation. All updates – including ones of popular keys –

are flushed to disk, even though persistence is assured via a

separate write-ahead-log (WAL).
Yet LSMs have supplanted the traditional spatial data par-

titioning of B-trees for a reason [40]. In B-trees, each update

induces random I/O to a leaf, resulting in poor write perfor-

mance. Moreover, the need to preserve a consistent image

of a leaf while it is being over-written induces high write

amplification. 𝐵𝜖 -trees [26] mitigate this cost using write

buffers. However, this slows down lookups, which now have

to search in unordered buffers, possibly on disk. LSMs, in

contrast, achieve high write throughput by absorbing writes

in memory and periodically flushing them as sequential files

to disk; they expedite reads by caching data in DRAM.

The resounding performance advantage of the LSM ap-

proach over B- and B
𝜖
-trees has been repeatedly demon-

strated, e.g., in a recent study of the Percona MySQL server

using three storage engines – RocksDB, TokuDB, and Inn-

oDB – based on LSM, a B
𝜖
-tree, and a B-tree, respectively [35].

Another advantage of LSMs is that they readily ensure con-

sistency under multi-threaded access – in particular, atomic

scans – via lock-free multi-versioning. In contrast, databases

based on B- or B
𝜖
-trees either use locks [7] or forgo scan

consistency [43].

Our goal is to put forth a KV-store design alternative suited

for the spatial locality arising in today’s workloads, without

forfeiting the benefits achieved by the LSM approach.

1.3 Our contribution: EvenDB
We present EvenDB, a high-throughput persistent KV-store

geared towards spatial locality. EvenDB’s architecture (§2)

combines a spatial data organization with LSM-like batch I/O.

The pillars of our design are large chunks holding contiguous
key ranges. EvenDB’s chunks are not merely a means to

organize data on-disk (like nodes in a B-tree). They are also

the basic units for read-write DRAM caching, I/O-batching,

logging, and compaction. This approach is unique. Typical

KV-stores rely on finer-grain OS- and application-level page

caches (whereas chunks consist of many pages) and employ

a global WAL.

Our novel chunk-based organization has several benefits.

First, chunk caching is effective for spatially-local workloads.

Second, chunk-level logging eliminates the need to log each

update in a system-level WAL, thus reducing write ampli-

fication and expediting crash-recovery. Finally, using the

same data structure for both the read-path (as a cache) and

the write-path (as a log) allows us to perform in-memory
compaction, reducing write amplification even further.

The downside of spatial partitioning is that if the data

lacks spatial locality and the active working set is big, chunk-

level I/O batching is ineffective. Moreover, caching an entire

chunk for a single popular key is wasteful. We mitigate the

latter by adding a row cache for read access to hot keys. Even
so, our design is less optimal for mixed read/write workloads

lacking spatial locality, for which the LSM approach may

yield better performance.

Our algorithm (§3) is designed for high concurrency. It

supports atomic scans using low-overhead multi-versioning,

where versions are increased only by scans and not by up-

dates. It ensures consistency and correct failure-recovery.

We implement EvenDB in C++ (§4) and extensively eval-

uate it (§5) via three types of workloads: (1) a production

trace collected from a large-scale mobile analytics platform;

(2) workloads with synthetically-generated composite keys

exercising standard YCSB scenarios [31]; and (3) YCSB’s tra-

ditional benchmarks, which employ simple (non-composite)

keys. We compare EvenDB to the recent (Oct 2018) release of

RocksDB [14], a mature industry-leading LSM KV-store. We

experimented with two additional open-source KV-stores,

PebblesDB [45] and TokuDB [17] (the only publicly-available

𝐵𝜖 -tree-based KV-store); both performed significantly worse

than RocksDB and EvenDB, so we focus on RocksDB results.

Our main findings are:

1. EvenDB is better than RocksDB under high spatial

locality. For instance, on a 256GB production dataset,
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EvenDB ingests data 4.4× faster than RocksDB and

reduces write amplification by almost 4×.
2. EvenDB significantly outperforms RocksDB whenever

most of the working set fits in RAM, accelerating scans

by up to 3.5×, puts by up to 2.3×, and gets by up to

2×.
3. EvenDB’s performance is comparable to RocksDB’s in

traditional YCSB workloads without spatial locality.

4. RocksDB outperforms EvenDB (by 20–25%) in mixed

read/write workloads with large active working sets

and no spatial locality, although EvenDB’s write am-

plification remains ∼ 2× smaller than RocksDB’s.

Our results underscore the advantages of EvenDB’s spatially-

organized chunks: (1) eliminating fragmentation of key ranges

yields better performance under spatial locality; (2) keeping

hot ranges in memory leads to better performance when

most of the working set fits in RAM; and (3) in-memory

chunk compaction saves disk flushes and reduces write vol-

ume. In addition, in-chunk logging allows quick recovery

from crashes with no need to replay a WAL.

§6 surveys related work and §7 concludes this paper.

2 Design Principles
2.1 Access semantics and optimization goals
EvenDB is a persistent ordered key-value store. Similarly

to popular industrial ones [12–14], it supports concurrent

access by multiple threads and ensures strong consistency.

Specifically its put, get, and scan operations are atomic. For
scans, this means that all key-value pairs returned by a single

scan belong to a consistent snapshot reflecting the state of

the data store at a unique point in time.

EvenDB persists data to disk to allow it to survive crashes.

As in other systems [13, 14], it supports asynchronous persis-
tence, where puts are buffered before being persisted in the

background, trading durability for speed. In this case, some

recent updates may be lost but recovery is to a consistent
state in the sense that if some put is lost, then no ensuing

(and thus possibly dependent) puts are reflected.

Our key optimization goals are the following:

1. Optimize for spatial locality, e.g., workloads that em-

ploy composite keys.

2. Minimize write amplification to reduce disk wear.

3. Strive for high performance in sliding-local scenarios,
where most of the active working set fits in DRAM.

Note that we do not expect the entire database to fit

in memory, only the active data.

4. Ensure fast recovery to a consistent state.

2.2 Design choices
EvenDB combines the spatial data partitioning of B-trees

with the optimized I/O and quick access of LSMs. Its data

layout is illustrated in Figure 2. We now discuss its key com-

ponents.

Figure 2. EvenDB’s organization. Gray boxes depict meta-

data, light blue areas show RAM caches of KV-pairs, and

blue areas represent on-disk KV storage.

Chunks. To leverage spatial locality, we partition data

– both on-disk and in-memory – by key. Our data struc-

ture is organized as a list of chunks holding consecutive

key ranges. All chunks are represented in memory via light-

weight volatile metadata objects, which are reconstructed

from disk on recovery.

Sequential I/Owith in-chunk logging. For persistence,
each chunk has a file representation called funk (file chunk),

which holds all the KV-pairs in the chunk’s range. Within

funks, we adopt LSM’s sequential I/O approach. To this end,

the funk is divided into two parts: (1) a sorted SSTable (Sorted
String Table [29]), and (2) an unsorted log. New updates are

appended to the log; the log is merged into the SSTable via

an infrequent background compaction process. Under spatial

locality, popular chunks are targeted frequently, allowing

effective batching of their log updates. Unlike LSMs, EvenDB

logs writes exclusively within their funks and avoids dupli-

cating the updates in a separate WAL. This reduces write

amplification and expedites recovery.

Chunk-level caching with in-memory compaction.
DRAM caches are instrumental for read performance. To fa-

vor workloads with spatial locality, we cache entire chunks:

a popular chunk is cached in a memory data structure called

munk (memory chunk). Similar to their on-disk counter-

parts, munks have a compacted sorted prefix while new up-

dates are appended at the end and remain unsorted until the

next compaction. Whereas LSM caches only serve the read-

path, caching at the chunk granularity allows us to leverage

munks also in the write-path, specifically, for in-memory

compaction. We observe that compacting a funk’s log is only

required for performance (to expedite on-disk lookup) and

is redundant whenever the chunk is cached. Thus, when

a chunk has a munk, we compact it almost exclusively in

memory and allow the disk log to grow. Note that if a chunk

does not have a munk, it usually means that the chunk is

“cold” and hence there is little or no new data to compact. So
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either way, disk compaction is rare, and write amplification

is low.

Fast in-memory access. Chunks are organized in a

sorted linked list. To speed up lookups, they are indexed

using a volatile index (a sorted array in our implementation).

Row caches and Bloom filters. EvenDB adopts two

standard mechanisms from LSMs. First, to expedite access to

keys whose chunks are only on-disk (i.e., have no munks), a

row cache of individual popular keys serves the read-path.
The row cache is important for workloads that lack spatial

locality where caching an entire chunk for a single “hot”

key is wasteful. Second, for munk-less chunks, we employ

Bloom filters to limit excessive access to disk. The Bloom

filter is maintained as long as the chunk has no munk, and

is re-created whenever a munk is evicted.

Concurrency and multi-versioning. EvenDB allows

high parallelism among threads invoking its API calls. Get op-

erations are wait-free (never block) and puts use lightweight

synchronization. To support atomic scans, we employ a light

form of multi-versioning that uses copy-on-write to keep

old versions only if they may be required by ongoing scans.

In other words, if a put attempts to overwrite a key required

by an active scan, then a new version is created alongside

the existing one, whereas versions that are not needed by

any scan are not retained. Version management incurs a

low overhead because it occurs only on scans. In addition,

tagging each value with a version allows EvenDB to easily

recover to a consistent point in time, namely a version below

which all puts have been persisted to disk.

3 EvenDB’s Design
In §3.1 we present EvenDB’s data organization. We discuss

concurrency control and atomic scans in §3.2. §3.3 overviews

EvenDB’s normal operation flow, while the data structure’s

maintenance is discussed in §3.4. Finally, §3.5 discusses data

flushes and failure recovery.

3.1 Data organization
EvenDB’s data layout is depicted in Figure 2. Data is par-

titioned into chunks, each holding a contiguous key range.

Each chunk’s data (keys in its range and their corresponding

values) is kept on-disk (funks, for persistence), and possibly

in-memory (munks, for fast access). Munks can be replaced

and loaded from funks at any time based on an arbitrary re-

placement policy. Chunk metadata objects are significantly

smaller than munks and funks (typically, less than 1 KB vs.

tens of MBs) and are always kept in memory.

A volatile index maps keys to chunks. Index updates are

lazy, offering only best-effort expedited search.

A funk consists of two files: a compacted and sorted KV

map SSTable and a write log. When a funk is created, the

former holds all the chunk’s KV pairs and the latter is empty.

New KV pairs are subsequently appended to the log. If a key

is over-written, its old value remains in the SSTable while

the new one is added to the log (the log is more up-to-date).

This structure allows us to benefit from sorted searches on

the SSTable and at the same time to update chunks without

relocating existing data, thus minimizing write amplifica-

tion. As a funk’s log grows, however, searching becomes

inefficient and the funk is no longer compact, i.e., it may

contain redundant (over-written) values. Therefore, once

the log exceeds a certain threshold, we reorganize the funk

via a process we call rebalance, as explained below. The re-

balance threshold controls the system’s write amplification,
namely, the additional space consumed on top of the raw

data. Note that the additional space amplification induced by

fragmentation is negligible, because chunks typically consist

of ∼1000 pages.
Amunk holds KV pairs in an array-based linked list. When

a munk is created, some prefix of this array is populated,

sorted by key, so each cell’s successor in the linked list is the

ensuing cell in the array. New KV entries are appended after

this prefix. As new entries are added, they create bypasses in

the linked list, and consecutive keys in the list are no longer

necessarily adjacent in the array. Nevertheless, as long as

a sizable prefix of the array is sorted and insertion order is

random, bypasses are short in expectation. Keys can thus be

searched efficiently via binary search on the sorted prefix

followed by a short traversal of a bypass path.

As KV pairs are added, overwritten, and removed, munks

and funks need to undergo reorganization. This includes (1)

compaction to garbage-collect removed and overwritten data,

(2) sorting keys to make searches more efficient, and (3) split-
ting overflowing chunks. Reorganization is performed by

three procedures: (1) Munk rebalance (creating a new com-

pacted and sorted munk instead of an existing one) happens

in-memory, independently of disk flushes. (2) Funk rebalance

(on-disk) happens much less frequently. (3) Splits create new

chunks as well as new funks and munks.

Whenever a chunk is cached (i.e., has a munk), access to

this chunk is particularly fast: the chunk metadata is quickly

located using the index, the munk’s sorted prefix allows for

fast binary search, and updates are added at the end of the

munk’s array and appended to the funk’s log. We take two

measures to mitigate the performance penalty of accessing

keys in non-cached chunks.

First, we keep a row cache holding popular KV pairs only

from munk-less chunks. Note that unlike munks, which

cache key ranges, the row cache holds individual keys, and

is thus more effective in dealing with point queries (gets as

opposed to scans) with no spatial locality.

If the active working set is larger than the available DRAM,

these two caches might not suffice, and so a certain portion

of reads will be served from disk. Here, the slowest step is

the sequential search of the log. To reduce such searches,

a chunk with no munk holds a Bloom filter for the corre-

sponding funk’s log, which eliminates most of the redundant
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log searches. The Bloom filter is partitioned into a handful

of filters, each summarizing the content of part of the log,

limiting sequential searches to a small section of the log.

3.2 Concurrency and atomic scans
EvenDB allows arbitrary concurrency among operations.

Gets are wait-free and proceed without synchronization. In

order for scans to be atomic, they synchronize with puts, po-

tentially waiting for some puts to complete (puts never wait

for scans). Puts also synchronize with rebalance operations.

To support atomic scans we employ a system-wide global
version (GV). A scan creates a snapshot associated with GV’s

current value by fetching and incrementing GV. This sig-

nals to ensuing put operations that they must not overwrite

the highest version smaller than the new GV value. This

resembles a copy-on-write approach, which creates a virtual

snapshot by indicating that data pertaining to the snapshot

should not be overwritten in-place.

To allow garbage collection of old versions, EvenDB tracks

the snapshot times of active scans. This is done in a dedi-

cated Pending Operations (PO) array, which has one entry

per active thread, and is also used to synchronize puts with

scans as explained shortly. The compaction process removes

old versions that are no longer required for any scan listed in

PO. Specifically, for each key, it removes versions older than

the highest version smaller than the minimal scan entry in

PO and the value of GV when the rebalance begins.

A put obtains a version number from GV without incre-

menting it. Thus, multiple puts may write values with the

same version, each over-writing the previous one.

If a put obtains its version before a scan increments GV,

the new value must be included in the scan’s snapshot. How-

ever, because the put’s access to the GV and the insertion

of the new value to the chunk do not occur atomically, a

subtle race may arise. Assume a put obtains version 7 from

GV and then stalls before inserting the value to the chunk

while a scan obtains version 7 and increments GV to 8. If

the scan proceeds to read the affected chunk, it misses the

new value it should have included in its snapshot. To remedy

this, puts announce (in PO) the key they intend to change

when beginning their operations and scans wait for relevant

pending puts to complete; see the next section for details.

Rebalance operations synchronize with concurrent puts

using the chunk’s rebalanceLock. This is a shared/exclusive
lock, acquired in shared mode by puts and in exclusive mode

(for short time periods) by rebalance. Gets and scans do not

acquire the lock. Note that it is safe for them to read from a

chunk while it is being replaced because (1) rebalance makes

the new chunk accessible only after it is populated, and (2) a

chunk is immutable during rebalance, so the newly created

chunk holds the same content as the displaced one.

To minimize I/O, we allow at most one thread to rebalance

a funk at a given time. This is controlled by the funkChange-
Lock, which is held by the thread rebuilding the chunk. It is

acquired using a try_lock, where threads that fail to acquire

it do not retry but instead wait for the winning thread to

complete the funk’s creation.

3.3 EvenDB operations
Algorithm 1 presents pseudocode for EvenDB’s operations.

Both get and put begin by locating the target chunk using the

lookup function. In principle, this can be done by traversing

the chunk list, but that would result in linear search time.

To expedite the search, lookup first searches the index. But
because index updates are lazy – they occur after the new

chunk is already in the linked list – the index may return a

stale chunk that had already been replaced by rebalance. To

this end, the index search is repeated with a smaller key in

case the index returns a stale chunk, and the index search is

supplemented by a linked-list traversal.

Get. If the chunk has a munk, get searches the key in it

by first running a binary search on its sorted prefix and then

traversing linked list edges as needed. Otherwise, get looks

for the key in the row cache. If not found, it queries the

Bloom filter to determine if the key might be present in the

target chunk’s log, and if so, searches for it there. If the key

is in none of the above, the SSTable is searched.

Put. Upon locating the chunk, put grabs its rebalanceLock
in shared mode to ensure that it is not being rebalanced. It

then registers itself in PO with the key it intends to put,

reads GV, and sets the version field in its PO entry to the

read version. The put then proceeds to write the new KV

pair to the funk’s log and to the munk, if exists. If the funk

has no munk and the row cache contains an old value of

the key, the row cache is then updated. The munk and funk

are multi-versioned to support atomic scans, whereas the

row cache is not used by scans and holds only the latest

version of each key. Finally, a put unregisters itself from PO,

indicating completion, and releases the chunk’s rebalance

lock.

We note that in case multiple puts concurrently update

the same key with the same version, they may update the

funk and munk (or the funk and row cache) in different

orders, and so the latest update to one will not coincide with

the latest update to the other. This can be addressed, for

example, by locking keys. Instead, we opt to use a per-chunk

monotonically increasing counter (not shown in the code) to

determine the order of concurrent put operations updating

the same key with the same version. We enforce updates

to occur in order of version-counter pairs by writing them

alongside the values in the munk, PO, funk, and row cache.

Following a split, the new chunks inherit the counter from

the one they replace.

Scan. A scan first publishes its intent to obtain a version

in PO, to signal to concurrent rebalances not to remove the

versions it needs. It fetches-and-increments GV to record its
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Algorithm 1 EvenDB normal operation flow for thread i.

1: procedure get(key)
2: 𝐶 ← lookup(key)
3: if 𝐶 .munk then
4: search key in 𝐶 .munk linked list; return

5: search key in row cache; return if found

6: if key∈ 𝐶.bloomFilter then
7: search key in funk.log; return if found

8: search key in funk.SSTable; return if found

9: return NULL

10: procedure put(key, val)
11: 𝐶 ← lookup(key)
12: lockShared(𝐶 .rebalanceLock)
13: PO[i]← ⟨put, key, ⊥⟩ ⊲ publish thread’s presence

14: gv← GV ⊲ read global version

15: PO[i]← ⟨put, key, gv⟩ ⊲ write version in PO
⊲ write to funk log, munk (if exists), and row cache

16: append ⟨key, val, gv⟩ to funk.log
17: if 𝐶 .munk then
18: add ⟨key, val, gv⟩ to 𝐶 .munk’s linked list

19: else ⊲ no munk – key may be in row cache

20: update ⟨key, val⟩ in row cache (if key is present)

21: unlock(𝐶 .rebalanceLock)
22: PO[i]← ⊥ ⊲ put is no longer pending

23: procedure scan(key1, key2)
24: PO[i]← ⟨scan, key1, key2, ⊥⟩ ⊲ publish scan’s intent

25: gv← F&I(GV) ⊲ fetch and increment global version

26: PO[i]← ⟨scan, key1, key2, gv⟩ ⊲ publish version in PO

27: 𝑇 ← PO entries updating keys in range [key1, key2]
28: wait until ∀𝑡 ∈ 𝑇, 𝑡 completes or has a version > gv
29: 𝐶 ← lookup(key1)
30: repeat
31: collect from 𝐶 .munk or 𝐶 .funk (log and SSTable)

max version ≤gv for all keys in [key1, key2]
32: 𝐶 ← 𝐶 .next
33: until reached key2

snapshot time gv, and then publishes its key-range and gv
in PO. Next, the scan waits for the completion of all pend-

ing puts that might affect it – these are puts of keys in the

scanned key range that either do not have a version yet

or have versions lower than the scan time. This is done by

busy waiting on the PO entry until it changes; monotonically

increasing counters are used in order to avoid ABA races.

Then it collects the relevant values from all chunks in

the scanned range. Specifically, if the chunk has a munk, the

scan reads from it, for each key in its range, the latest version

of the value that precedes its snapshot time. Otherwise, the

scan collects all the relevant versions for keys in its range

from both the SSTable and the log and merges the results.

Finally, the scan unregisters from PO.

3.4 Rebalance
Munk (resp. funk) rebalance improves the data organization

in a munk (funk) by removing old versions that are no longer

needed for scans, removing deleted items, and sorting all the

keys. It is typically triggered when the munk (funk) exceeds

a capacity threshold. The threshold for funk rebalance is

higher when it has a munk, causing most rebalances to occur

in-memory. Rebalance creates a new munk (funk) rather

than reorganize it in-place in order to reduce the impact

on concurrent accesses. When it is ready, EvenDB flips the

chunk’s reference to the new munk (funk).

Munk rebalance acquires the chunk’s rebalanceLock in

exclusive mode to block puts to the munk throughout its

operation, while concurrent gets and scans can exploit the

munk’s immutability and proceed without synchronization.

Rebalance iterates through PO to collect the minimum ver-

sion number among all active scans. Since each rebalance

operates on a single chunk with a known key range, scans

targeting non-overlapping ranges are ignored. If a scan has

published its intent in PO but published no version yet, the

rebalance waits until the version is published. When the new

munk is ready, the munk reference in the chunk is flipped

and rebalanceLock is released.

Funk rebalance creates a new (SSTable, log) pair. If the

chunk has a munk, we simply perform munk rebalance on

its munk and then flush the munk to the new SSTable file

and the new log is empty. Otherwise, the new SSTable is

created by merging the old SSTable with the old log. This

procedure involves I/O and may take a long time, so we do

not block puts for most of its duration. Rather, puts occur-

ring during the merge are diverted to a separate log segment

that is ignored by the merge. When the merge completes,

rebalance proceeds as follows: (1) block new puts using the

rebalanceLock; (2) set the new log to be the diverted puts

segment; (3) flip the funk reference; and (4) release rebal-

anceLock. Simultaneous rebalance of the same funk by two

threads is prevented (through a separate exclusive lock) in

order to avoid redundant work.

If a munk rebalance exceeds some capacity threshold in a

new munk, it triggers a split. Unlike single-chunk rebalances,
splits entail changes in the chunks linked list as well as the

index, and so are more subtle. A split proceeds in two phases.

In the first, the chunk is immutable, namely, rebalanceLock

is held in exclusive mode. In the second (longer) phase, the

new chunks are mutable.

The first phase runs in-memory and so is fast (this prevents

blocking puts for a long time). It proceeds as follows: (1) split

the munk into two sorted and compacted halves; (2) create

two new chunks (metadata), each referencing one of the

new munks but temporarily sharing the same old funk, both

immutable, with the first half munk pointing to the second;
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(3) insert the new chunks into the list instead of the old

chunk; and finally (4) update the index. Note that once the

new chunks are added to the list they can be discovered by

concurrent operations. On the other hand, other concurrent

operations might still access the old chunk via the index or

stale pointers. This does not pose a problem because the

chunks are immutable and contain the same KV pairs.

In the second phase, puts are enabled on the new chunks

(rebalanceLock is released) but the new chunks cannot yet

be rebalanced. Note that the old chunk remains immutable;

it continues to serve ongoing reads as long as there are

outstanding operations that hold references to it, after which

it may be garbage collected. This phase splits the shared funk.

It uses the sorted prefixes of the new munks as SSTables and

their suffixes as logs. Once done, the funk references in the

new chunks are flipped and future rebalances are allowed.

Underflowing neighboring chunks (e.g., following massive

deletions) can be merged via a similar protocol. Our current

EvenDB prototype does not implement this feature.

3.5 Disk flushes and recovery
Recall that all puts write to the funk log, regardless of whether

the chunk has a munk. Funk logs are not replayed on recov-

ery, and so recovery time is not impacted by their length.

Like most popular KV-stores, EvenDB supports twomodes

of persistence – synchronous and asynchronous. In the former,

updates are persisted to disk (using an fsync call) before re-
turning to the user. The drawback of this approach is that it

is roughly an order-of-magnitude slower than the asynchro-

nous mode. Asynchronous I/O, where fsync is only called

periodically, reduces write latency and increases throughput,

but may lead to loss of data that was written shortly before

a crash. The tradeoffs between the two approaches are well

known, and the choice is typically left to the user.

Recovery semantics. In the synchronousmode, the funks

always reflect all completed updates. In this case, recovery is

straightforward: we simply construct the chunks linked list

and chunk index from the funks on disk, and then the data-

base is immediately ready to serve new requests, populating

munks and Bloom filters on-demand.

In the asynchronous mode, some of the data written be-

fore a crash may be lost, but we ensure that the data store

consistently reflects a prefix of the values written. For ex-

ample, if put(k1, v1) completes before put(k2, v2) is invoked

and then the system crashes, then following the recovery,

if k2 appears in the data store, then k1 must appear in it as

well. Such recovery to a consistent state is important, since

later updates may depend on earlier ones.

Note that the temporal organization in LSMs inherently

guarantees such consistency, whereas with spatial data or-

ganization, extra measures need to be taken to ensure it.

epoch last checkpointed version

0 1375

1 956

Table 1. Example recovery table during epoch 2.

Checkpointing for consistent recovery. We use check-
points to support recovery to a consistent state in asynchro-

nous mode. A background process creates checkpoints using

atomic scans: It first fetches-and-increments GV to obtain

a snapshot version gv. Next, it synchronizes with pending

puts via PO to ensure that all puts with smaller versions are

complete. It then calls fsync to flush all pending writes to

disk. Finally, it writes gv to a dedicated checkpoint file on
disk. This enforces the following correctness invariant: at

all times, all updates pertaining to versions smaller than or

equal to the version recorded in the checkpoint file have

been persisted. Note that some puts with higher versions

than gv might be reflected on disk while others are not.

EvenDB’s recovery is lazy. Data is fetched into munks

as needed during normal operation. To ensure consistency,

following a recovery, retrievals from funks should ignore

newer versions that were not included in the latest completed

checkpoint before the crash. This must be done by every

operation that reads data from a funk, namely get or scan

from a chunk without a munk, funk rebalance, or munk load.

To facilitate this check, we distinguish between pre-crash

versions and new ones created after recovery using epoch
numbers. Specifically, a version is split into an epoch number

(in our implementation, the four most-significant bits of the

version) and a per-epoch version number. Incrementing the

GV in the normal mode effectively increases the latter. The

recovery procedure increments the former and resets the

latter, so versions in the new epoch begin from zero.

We maintain a recoveryTable mapping each recovered

epoch to its last checkpointed version number. For example,

Table 1 shows a possible state of the recovery table after two

recoveries, i.e., during epoch 2.

The recovery procedure reads the checkpoint time from

disk, loads the recoveryTable into memory, adds a new row

to it with the last epoch and latest checkpoint time, and

persists it again. It then increments the epoch number and

resumes normal operation with version 0 in the new epoch.

4 Implementation
We implement EvenDB in C++. We borrow the SSTable im-

plementation from the RocksDB open source [14]. Similarly

to RocksDB, we use jemalloc for memory allocation.

The chunk index is implemented as a sorted array holding

the minimal keys of all chunks. Whenever a new chunk is

created (upon split), the index is rebuilt and the reference to

the index is atomically flipped. We found this simple imple-

mentation to be fastest since splits are infrequent.
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The munk cache applies an LFU eviction policy. We use

exponential decay to maintain the recent access counts, sim-

ilar to [33]: periodically, all counters are sliced by a factor

of two. The row cache implements a coarse-grained LRU

policy using a fixed-size queue of hash tables. New entries

are inserted into the head table. Once it overflows, a new

empty table is added to the head, and the tail is discarded.

Consequently, lookups for recently cached keys are usually

served by the head table, and unpopular keys are removed

from the cache in a bulk once the tail table is dropped.

The row cache never holds stale values. Therefore, a put

updates the cache whenever a previous version of the up-

dated key is already in the cache. But if the key is not in the

cache, put does not add it, to avoid overpopulating the cache

in write-dominated workloads. After a get, the up-to-date

KV-pair is added to the head table unless it is already there.

If the key’s value already exists in another table, it is shared

by the two tables, to avoid duplication.

5 Evaluation
The experiment setup is described in §5.1. We present perfor-

mance results with production data in §5.2 and with standard

synthetic workloads in §5.3.

Our baseline is RocksDB – a mature and widely-used in-

dustrial KV-store – release 5.17.2 (Oct 24, 2018). It is worth

noting that RocksDB’s performance is significantly improved

in this release [27]. In §5.4 we compare EvenDB against Peb-

blesDB [45], a research LSM prototype, and TokuDB [17] –

the only publicly available KV-store whose design is inspired

by B
𝜖
-trees. Both perform significantly worse than RocksDB

and EvenDB, motivating our focus on RocksDB.

We study scalability and sensitivity to configuration set-

tings in §5.5. Overall, our results show the following:

• EvenDB excels under the production workloads for

which it has been designed.

• EvenDB performs better than RocksDB in spatially-

local workloads and in small datasets. In other work-

loads, EvenDB is largely on par with RocksDB, per-

forming better in get-only or put-only workloads and

worse in mixed read-write workloads.

• EvenDB has much smaller write amplification. Both

data stores have similar space amplification.

5.1 Setup
Methodology. Our hardware is a 12-core (24-thread) In-

tel Xeon 5 with 4TB SSD disk. We run each experiment

within a Linux container with 16GB RAM. Data is stored

uncompressed. We run 5 experiments for each data point

and present the median measurement to eliminate outliers.

Since experiments are long, the results vary little across runs.

In all of our experiments, the STD was within 6.1% of the

mean, and in most of them below 3%.

We employ a C++ implementation [15] of YCSB [31], the

standard benchmarking platform for KV-stores. YCSB pro-

vides a set of APIs and a synthetic workload suite inspired by

real-life applications. In order to exercise production work-

loads, we extend YCSB to replay log files.

In each experiment, a pool of concurrent worker threads

running identical workloads stress-tests the KV-store. We

exercise 12 YCSB workers and allow the data store to use

4 additional background threads for maintenance. We also

experimented with different numbers of worker threads, find-

ing similar scalability trends in RocksDB and EvenDB; these

results are omitted for lack of space.

Configuration. To avoid over-tuning, all experiments

use the data stores’ default configurations. For RocksDB, we

use the configuration exercised by its public performance

benchmarks [11]. We experimented with tuning RocksDB’s

memory resources based on its performance guide [1]; this

had mixed results, improving performance by at most 25%

over the default configuration in some workloads but de-

teriorating it by up to 25% in others. Overall, the default

configuration performed best. We fixed the PebblesDB code

to resolve a data race reported in the project’s repository [19].

EvenDB’s default configuration allocates 8GB to munks

and 4GB to the row cache, so together they consume 12GB

out of the 16GB container. The row cache consists of three

hash tables. The Bloom filters for funks are partitioned 16-

way. We set the EvenDB maximum chunk size limit to 10MB,

the rebalance size trigger to 7MB, the funk log size limit to

2MB for munk-less chunks, and to 20MB for chunks with

munks. The results of the experiments we ran in order to

tune these parameters are omitted due to lack of space.

We focus on asynchronous persistence, i.e., flushes to disk

happen in the background; (with synchronous I/O, perfor-

mance is an order-of-magnitude slower, trivializing the re-

sults in all scenarios that include puts).

5.2 Production data
Our first set of experiments is driven by a log collected by

a production mobile analytics engine. The log captures a

stream of ∼13M unique events per minute, with an average

log record size of 800B, i.e., ∼10GB/min. We load the logged

events into a table indexed by app id and timestamp. As

noted in §1, the app id distribution is heavy-tailed, i.e., the

data exhibits spatial locality. We use this log to drive put-only
(100% put) and scan-dominated (95% scan, 5% put) tests.

Put-only (data ingestion). Figure 3 presents our data

ingestion results. Here, we load 64GB, 128GB and 256GB

of data, in timestamp order; note that this order is differ-

ent from the KV-store’s primary key. Figure 3a depicts the

throughput in each experiment. Clearly, EvenDB is much

faster than RocksDB and its advantage becomes more pro-

nounced as the dataset grows. For example, EvenDB ingests

256GB within 1.1 hours, whereas RocksDB requires 4.85
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Figure 3. EvenDB vs RocksDB performance under ingestion (100% put) workload with production datasets.
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Figure 4. Space consumption during ingestion, 256GB.

Duration CPU time Read I/O Write I/O

EvenDB 1.1 hr 14.6 hr 47.6 GB 645.2 GB

RocksDB 4.85 hr 10.4 hr 2053.5 GB 2660.4 GB

Table 2. EvenDB vs RocksDB resource consumption during

ingestion (100% put) of a 256GB production dataset.

hours (4.4× slower). Figure 3b depicts the throughput dy-

namics for the 256GB dataset. RocksDB’s throughput, while

stable overall, suffers from stalls (lasting a minute or longer)

caused by compactions. EvenDB delivers predictable perfor-

mance, with a throughput constantly above 4× RocksDB’s
average rate.

Figure 3c shows the write amplification in the same bench-

mark. While EvenDB’s amplification is unaffected by scaling,

RocksDB deteriorates as the dataset (and consequently, the

number of LSM levels) grows. These results underscore the

importance of EvenDB’s in-memory compactions, which

consume CPU but dramatically reduce the I/O load by mini-

mizing on-disk compaction (funk rebalances).

This dichotomy between CPU and I/O usage can be ob-

served in Table 2, which summarizes the overall resource

consumption in the 256GB ingestion experiment. We see

that EvenDB is CPU-intensive – it exploits 40% more CPU

cycles than RocksDB, which means that its average CPU rate

is 6.3× higher. On the other hand, RocksDB is I/O-intensive

– it reads 43× (!) more data than EvenDB (recall that the

workload is write-only; reading is for compaction purposes).

Figure 4 shows the disk space used during the ingestion.

In EvenDB the space occupied by logs (dotted line) grows

linearly with the data size, and is the main reason for space

amplification (namely the gap between space consumption

and input size). We see the log sizes level out at the end of

the run. This occurs because as threads “run out” of data to

ingest, they can complete a backlog of pending rebalances.

RocksDB’s space consumption increases sharply between

compactions and then drops whenever compaction occurs.

Scan-dominated (analytics). We run 40M operations –

95% range queries, 5% puts – on the KV-store produced by the

ingestion tests. Every query scans a sequence of recent events

within one app (all the scanned rows share the app id key

prefix). The app id is sampled from the data distribution (so

popular apps are queried more frequently). Figure 5 depicts

the performance dynamics for queries that scan 1-minute

histories. We experimented also with shorter scans, with

similar results, which are omitted for lack of space.

EvenDB completes all experiments 20% to 30% faster than

RocksDB. Yet the two systems’ executions are very different.

EvenDB’s throughput stabilizes almost instantly upon tran-

sition from ingestion to analytics because its working set

munks are already in memory. In contrast, it takes RocksDB

10 to 35 minutes (!) to reach the steady-state performance.

During this period, it goes through multiple compactions,

which degrade its application-level throughput beyond 90%.

After all compactions are done, RocksDB’s improved orga-

nization gives it an advantage over EvenDB (in large datasets)

by up to 23%, because EvenDB searches in logs of unpopular

funks. We note that this tradeoff between the maintenance

cost (for compaction) and the scan performance after mainte-

nance can be controlled via EvenDB’s log size limit parameter.

(E.g., we saw that scan throughput can grow by up to 20% by

tuning the system to use 512KB logs instead of the default

2MB; this experiment is omitted for lack of space.)

5.3 Synthetic benchmarks
In this section, we closely follow the YCSB benchmarking

methodology. Each experiment first loads a sequence of KV-

pairs, ordered by key, to an initially empty store, then runs

read operations to warm the caches, and then exercises – and
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Figure 5. EvenDB vs RocksDB throughput dynamics, scan-dominated (95% scans/5% put) workload with production data.

measures – the specific experiment scenario. Experiments

perform 80M data accesses (fewer if some of them are scans).

Since the load is in key order, the data stores are sorted from

the outset, and RocksDB’s files cover disjoint key ranges.

This reduces the overhead of compaction and mitigates the

stabilization delay observed in §5.2. Thus, performance re-

mains stable throughout the measurement period.

5.3.1 Workloads. We vary the dataset size from 4GB to

256GB in order to test multiple locality scenarios with respect

to the available 16GB of RAM. Similarly to the published

RocksDB benchmarks [11], the keys are 32-bit integers in

decimal encoding (10 bytes), which YCSB pads with a 4-byte

prefix (so effectively, the keys are 14 byte long). Values are

800-byte long.

We study the following four key-access distributions:

1. Zipf-simple – the standard YCSB Zipfian distribution

over simple (non-composite) keys. Key access frequencies

are sampled from a Zipf distribution. For most of the experi-

ments, we use the YCSB standard = 0.99, (where the most

frequent key occurs 4.87% of the time). We then study the

impact of using a smaller 𝜃 , i.e., a less skewed distribution.

The ranking is over a random permutation of the key range,

so popular keys are uniformly dispersed.

2. Zipf-composite – a Zipfian distribution over composite

keys. The key’s 14 most significant bits comprise the primary

attribute, which is drawn from a Zipf (with the same 𝜃 )

distribution over its range. The remainder of the key is drawn

uniformly at random. We also experimented with a Zipfian

distribution of the key’s suffix and the trends were similar.

3. Latest-simple – a standard YCSB workload reading sim-

ple keys from a distribution skewed towards recently added

ones. Specifically, the sampled key’s position w.r.t. the most

recent key is distributed Zipf.

4. Uniform – ingestion of keys sampled uniformly at ran-

dom. RocksDB reports a similar benchmark [10]. We only

consider uniform puts since uniform gets exhibit no locality

hence cannot leverage caching. Such workloads are not the

target use case for EvenDB.

The workloads exercise different mixes of puts, gets, and

scans. We use standard YCSB scenarios (A to F) that range

from write-heavy (50% puts) to read-heavy (95% − 100% gets

or scans). We also introduce a new workload, P, comprised

of 100% puts (a data ingestion scenario as in §5.2).

5.3.2 Evaluation results. Figure 6 presents the through-
put measurements in all YCSB workloads. Except for work-

load D, which exercises the Latest-simple pattern (depicted

in red), all benchmarks are run with both Zipf-simple (or-

ange) and Zipf-composite (blue). The P (put-only) workload

additionally exercises the Uniform access pattern (green).

EvenDB results are depicted with solid lines, and RocksDB

with dotted lines.

We now discuss the results for the different scenarios.

Put-only (data ingestion). In workload P (100% put, Fig-

ure 6a), EvenDB’s throughput is 1.8× to 6.4× that of RocksDB’s
with uniform keys, 1.3× to 2.3× with Zipf-composite keys,

and 0.9× to 1.6×with Zipf-simple keys. This scenario’s bottle-

neck is the reorganization of persistent data (funk rebalances

in EvenDB, compactions in RocksDB), which causes write

amplification and hampers performance.

Under the Zipf-composite workload, EvenDB benefits

from spatial locality whereas RocksDB’s write performance

is relatively insensitive to it, as is typical for LSM stores. For

small datasets (4-8GB), EvenDB accommodates all puts in

munks, and so funk rebalances are rare. In big datasets, funk

rebalances do occur, but mostly in munk-less chunks, which

are accessed infrequently. This is thanks to EvenDB’s high

log size limit for chunks with munks. Hence, in both cases,

funk rebalances incur less I/O than RocksDB’s compactions,

which do not distinguish between hot and cold data.

The Uniform workload exhibits no locality of any kind.

EvenDB benefits from this because keys are dispersed evenly

across chunks, hence all funk logs grow slowly, and funk

rebalances are infrequent. The throughput is therefore in-

sensitive to the dataset size. In contrast, RocksDB performs

compactions frequently albeit they are not effective (since
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(e) D – Latest-simple, 5% put, 95% get
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Figure 6. EvenDB vs RocksDB throughput under YCSB workloads with various key distributions.

there are few redundancies). Its throughput degrades with

the data size since when compactions cover more keys they

engage more files.

The write amplification in this experiment is summarized

in Figure 7. We see that EvenDB reduces the disk write rate

dramatically, with the largest gain observed for big datasets

(e.g., for the 64GB dataset the amplification factors are 1.3

vs 3.1 under Zipf-composite, and 1.1 vs 7.6 under Uniform).

We further measured space amplification at the end of

the run, and found that both EvenDB and RocksDB have

roughly 15–17% space amplification. Note that in EvenDB,

the space amplification is controlled by the log size threshold

parameter.

Mixed put-get. Workloads A (50% put, 50% get, Figure 6b)

and F (100% get-modify-put, Figure 6f) invoke puts and gets

at the same rate. Note that the latter exercises the usual get

and put API (i.e., does not provide atomicity). The get-put

mix is particularly challenging for EvenDB, especially with

simple keys, where it serves many gets from disk due to the

low spatial locality. The bottleneck is the linear search in

funk logs, which fill up due to the high put rate. RocksDB’s

caching is more effective in this scenario, so its disk-access

rate in get operations is lower, resulting in faster gets. While

EvenDB continues to outperform RocksDB in small datasets

or when spatial locality is high, its performance deteriorates

in large datasets with no such locality, where RocksDB is

almost 2× faster.
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Figure 7. EvenDB vs RocksDB write amplification under the

put-only workload P.

Figure 8, which depicts tail (95%) put and get latencies in

this scenario, corroborates our analysis. EvenDB has faster

puts and faster or similar get tail latencies with composite

keys (Figure 8a). With simple keys (Figure 8b), the tail put

latencies are similar in the two data stores, but the tail get

latency of EvenDB in large datasets surges.

To understand this spike, we break down the get latency

in Figure 9. Figure 9a classifies gets by the storage com-

ponent that fulfills the request, and Figure 9b presents the

disk search latencies by component. We see that with large

datasets, disk access dominates the latency. For example, in

the 64GB dataset, 3.3% of gets are served from logs under

Zipf-composite vs 4% under Zipf-simple, and the respective

log search latencies are 2.6 ms vs 4.2 ms. This is presum-

ably because in the latter, puts are more dispersed, hence

the funks are cached less effectively by the OS, and the disk

becomes a bottleneck due to the higher I/O rate.
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Figure 8. EvenDB vs RocksDB 95% latency (ms), under a

mixed get-put workload A.

The figure also shows that the row cache becomes instru-

mental as spatial locality drops – it serves 32.8% of gets with

Zipf-simple vs 4.5% with Zipf-composite.

Workloads B and D (Figures 6c and 6e) also mix gets and

puts, but with a lower put rate. Here, the funk logs don’t

grow as quickly as under an even put-get mix, and EvenDB

has a marked advantage in all key distributions with small

datasets (up to the available RAM size) and also with Zipf-

composite and Latest-simple keys in large datasets. But here,
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Figure 9. EvenDB get latency breakdown by serving com-

ponent, under a mixed get-put workload A.

too, its advantage diminishes with the dataset size, especially

under the Zipf-simple key distribution.

Read-only. In workload C (100% get, Figure 6d), EvenDB

performs 1.1× to 2× better than RocksDB with composite

keys, and up to 1.9× with simple ones (for small datasets).

In these scenarios, EvenDB manages to satisfy most gets

from munks, resulting in good performance. RocksDB relies

mostly on the OS cache to serve these requests and so it pays

the overhead for invoking system calls. RocksDB’s perfor-

mance in this scenario can be improved by using a larger

application-level block cache, but our experiments (not pre-

sented in this paper) have shown that this hurts performance

for bigger datasets as well as in other benchmarks.

Scan-dominated. Benchmarks E10–1000 (5% put, 95%

scan, Figures 6g- 6i) iterate through a number of items sam-

pled uniformly in the range [1,S], where S is 10, 100, or 1000.

Under Zipf-composite, this workload exhibits the spatial lo-

cality the system has been designed for, and indeed EvenDB

outperforms RocksDB in this workload for all dataset sizes

and all lengths of scans. Its biggest advantage – 3.2× – is

achieved with long scans over a small dataset. With simple

keys on a large dataset, in particular when scans are short,

EvenDB begins to suffer from long search times in logs (as

this dataset also includes puts), and RocksDB has better per-

formance. In §5.5 we show that EvenDB’s scan performance

on big datasets can be improved by adapting the funk log

size limit to this workload.

Impact of skew. We now vary the distribution skew con-

trolled by the parameter 𝜃 in the Zipf distribution. Figure 10

shows the impact of skew on performance. Table 3 shows the

frequency of the most popular key under each distribution.

Note that in the Zipf-composite distribution, only the most

significant bits are drawn from a Zipf distribution, hence

the much lower frequency. As expected, the performance of
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Figure 10. The impact of the Zipf distribution’s 𝜃 parameter

(skew) on throughput, 64GB dataset.

𝜃 = 0.99 0.95 0.90 0.85 0.80

Zipf-simple 4.87 3.30 1.91 1.04 0.54

Zipf-composite 0.013 0.012 0.010 0.009 0.008

Table 3. Frequency (% of occurrences) of the most popular

key under different 𝜃 values used for Zipf key generation.

both EvenDB and RocksDB deteriorates when the skew is

smaller, because both exploit locality. While put performance

is impacted similarly in the two data stores, EvenDB’s reads

are more sensitive than RockDB’s reads to the lack of local-

ity. This is because EvenDB’s fall-back in case of munk/row

cache misses is more costly.

5.4 Additional KV-Stores
We experimented with Percona TokuDB [20]; although dep-

recated, no newer version is available. The results were at

least an order-of-magnitude slower than RocksDB across the

board, and therefore we do not present them. Note that this

is in line with previously published comparisons [32, 35, 43].

We did not compare EvenDB against InnoDB because the

latter is not easily separable from the MySQL code. Yet pre-

vious evaluations have found InnoDB to be inferior to both

RocksDB and TokuDB under write-abundant workloads [35].

We next compare EvenDB to PebblesDB, whichwas shown

to significantly improve over RocksDB [45], mostly in single-

thread experiments, before RocksDB’s recent version was

released. We compare EvenDB to PebblesDB in a challeng-

ing scenario for EvenDB, with a 32GB dataset and the Zipf-

simple key distribution. We run each YCSB workload with 1,

2, 4, 8 and 12 threads. The results are summarized in Table 4.

While PebblesDB is slightly faster on some single-threaded

benchmarks, from 2 threads and onward EvenDB is consis-

tently better in all experiments, with an average performance

improvement of almost 1.8×. In all benchmarks, EvenDB’s

advantage grows with the level of parallelism. We observed

a similar trend with smaller datasets.

We note that in our experiments, RocksDB also consis-

tently outperforms PebblesDB. The discrepancy with the

results reported in [45] can be attributed, e.g., to RocksDB’s

evolution, resource constraints (running within a container),

a different hardware setting, and increased parallelism.

P A B, C D E10–1000 F

0.9–2.8× 0.9–1.6× 1.4–2.3× 1–2× 1–3.4× 0.8–1.2×
Table 4. EvenDB throughput improvement over PebblesDB,

32GB dataset, Zipf-simple keys, 1–12 worker threads.

EvenDB’s advantage grows with the number of threads.

5.5 Insights
Vertical scalability. Figure 11 illustrates EvenDB’s through-

put scaling for the 64GB dataset under Zipf-composite and

Zipf-simple distributions. We exercise the A, C and P scenar-

ios, with 1 to 12 worker threads. As expected, in C (100% gets)

EvenDB scales nearly perfectly (7.7× for composite keys,

7.8× for simple ones). The other workloads scale slower, due

to read-write and write-write contention as well as back-

ground munk and funk rebalances.
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Figure 11. EvenDB scalability with the number of threads

for the 64GB dataset and different workloads.
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Figure 12. EvenDB throughput sensitivity to configuration

parameters, on the 64GB dataset under A (mixed put-get)

and E100 (scan-dominant, 1 to 100 items).

EvenDB configuration parameters. We explore the sys-

tem’s sensitivity to funk-log configuration parameters, for

the most challenging 64GB dataset, and explain the choice

of the default values.

Figure 12a depicts the throughput’s dependency on the

log size limit of munk-less funks, under A and E100 with

the Zipf-composite key distribution. The fraction of puts

in A is 50% (vs 5% in E), which makes it more sensitive to

the log size. A low threshold (e.g., 128KB) causes frequent

funk rebalances, which degrades performance more than

3-fold. On the other hand, too high a threshold (4MB) lets
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the logs grow bigger, and slows down gets. Our experiments

use 2MB logs, which favors write-intensive workloads. E

favors smaller logs, since the write rate is low, and more

funk rebalances can be accommodated. Its throughput can

grow by up to 20% by tuning the system to use 512KB logs.

Figure 12b depicts the throughput dependency on the

Bloom filter split factor (i.e., the number of Bloom filters that

summarize separate portions of the funk log) in workload

A. Partitioning to 16 mini-filters gives the best result. The

impact of Bloom filter partitioning on EvenDB’s memory

footprint is negligible.

RocksDB configuration tuning. In RocksDB’s out-of-

the-box default configuration, the block cache is 8MB. We

further experimented with block cache sizes of 1GB, 2GB,

5GB, and 8GB. We note that RocksDB’s performance man-

ual recommends allocating 1/3 of the available RAM (∼5GB)
to the block cache [1]. The results are mixed. For a small

dataset (4GB) with composite keys, the block cache effec-

tively replaces the OS pagecache, and improves RocksDB’s

throughput by 1.3× and 1.6× for workloads C and E100, re-

spectively, by forgoing the system call overhead. This only

partly reduces the gap between RocksDB and EvenDB in

this setting. However, for bigger datasets (32GB and 64GB),

using a bigger block cache degrades RocksDB’s performance.

We found that the default configuration gives the best re-

sults for most of the workload suite. We therefore used this

configuration in §5.3 above.

6 Related Work
The vast majority of industrial mainstream NoSQL KV-stores

are implemented as LSM trees [12, 14, 18, 29, 38], building

on the foundations set by O’Neil et al. [41, 42].

Due to LSM’s design popularity, much effort has been

invested into working around its bottlenecks. A variety of

compaction strategies has been implemented in production

systems [27, 49] and research prototypes [22, 36, 45, 46]. Im-

provements include storage optimizations [36, 39, 44–46],

boosting in-memory parallelism [18, 34], and leveraging

workload redundancies to defer disk flushes [22, 25] or avoid

re-writing sorted data [46]. In contrast to these, EvenDB elim-

inates the concept of temporally-organized levels altogether

and employs a flat layout with in-memory compaction.

SLM-DB [36] is an LSM design that relies on persistent

memory and thus eliminates the need for a WAL. It utilizes

a B
+
-tree index in persistent memory on top of a flat list of

temporally-partitioned SSTables. In contrast, EvenDB does

not rely on special hardware. Moreover, to the best of our

knowledge, SLM-DB does not support concurrent operations.

In-memory compaction has been recently implemented

in HBase [25] by organizing HBase’s in-memory write store

as an LSM tree, eliminating redundancies in RAM to reduce

disk flushes. However, being incremental to the LSM design,

this approach fails to address spatial locality.

Range-based partitioning is also employed in B-trees [37]

and their variants [26]. In §1.2 we discussed the key chal-

lenges faced by storage systems adopting these designs,

which result in performance disadvantages compared to the

LSM approach (as shown, e.g., in [35]), and the difficulty to

support consistency – in particular, atomic scans – under

multi-threaded access. In contrast to B-tree nodes, EvenDB’s

chunks are not merely a means to organize data on-disk; they

are also the basic units for DRAM caching, I/O-batching, log-

ging, and compaction. This allows us to apply chunk-level

logging with sequential I/O and in-memory compaction.

Tucana [43] is an in-memory 𝐵𝜖 -tree index over a per-

sistent log of KV-pairs. To speed up I/O, it applies system

optimizations that are largely orthogonal to our work: block-

device access, copy-on-write on internal nodes, etc. However,

Tucana provides neither strong scan semantics nor consis-

tent recovery, and does not support concurrent puts.

A different line of work develops fast in-memory (volatile)

KV-stores [6, 9, 16, 48], e.g., for web and application caches.

Over time, many evolved to support durability, yet still re-

quire the complete data set to reside in memory. Although

EvenDB is optimized for “sliding-local” scenarios wheremost

of the active working set is in memory at any given time, it

does not expect all the data to fit in memory.

Finally, EvenDB’s in-munk data management leverages

techniques used in concurrent in-memory KV-maps, e.g.,

partially-sorted key lists [23, 50], lazy index updates [23, 47],

and synchronizing scans with puts via a PO array [23]. These

aspects are important, but since they do not involve I/O, they

do not have a major impact on overall performance.

7 Conclusions
We presented EvenDB – a novel persistent KV-store opti-

mized for workloads with high spatial locality, as prevalent

in modern applications. EvenDB provides strong (atomic)

consistency guarantees for random updates, random lookups,

and range queries. EvenDB outperforms the state-of-the-art

RocksDB LSM store in the majority of YCSB benchmarks,

with both standard and spatially-local key distributions, in

which it excels in particular. EvenDB further reduces write

amplification to near-optimal under write-intensive work-

loads. Finally, it provides near-instant recovery from failures.

Beyond building a particular system prototype, this paper

puts forth a novel KV-store design alternative that empha-

sizes spatial locality. We hope to see future realizations of

this approach with various improvements, through novel

ideas or ones borrowed from other existing solutions.
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